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Abstract

Fail-safe operation of Squirrel Cage Induction Motor (SCIM) is crucial for many industries

ranging from rolling mills, thermal power plants to railway locomotives. Faults in induction

motor can manifest in different forms, hampering the normal functioning of the locomotive

incurring behemoth losses. Predicting these defects at an early stage can drastically enhance

the operation efficiency. This type of condition based predictive maintenance can result in

lesser downtime and improved reliability.

In this thesis, an online condition monitoring system is developed to detect incipient

induction motor faults, with particular emphasis on railway locomotives as the major ap-

plication area. However, the diagnoser can be used for any SCIM. Spectral analysis of the

stator current is central to the fault detection algorithm. The acquired current signal is

preconditioned by removing the high-amplitude fundamental component using Extended

Kalman Filter (EKF) and a second order signal model. Pre-conditioning of the input

signal improves the detectability of the low amplitude fault frequency component under ad-

verse loading conditions. An elegant Rayleigh quotient-based spectral estimator is designed

specifically to detect and quantify weak SCIM faults. The accuracy of the proposed esti-

mator was found to be comprehensive when compared with Fourier analyses and Multiple

Signal Classifier (MUSIC) with its time complexity lower than MUSIC. Accurate relative-

amplitude estimation capability and low complexity make this estimator appropriate for

embedded applications. The slip and the supply frequency are found non-invasively from

the stator current for forming adaptive fault frequency search bands required for the spec-

tral estimation. Spectral estimation over small multiple bands reduced the computational

burden extensively. A relation between the peak magnitude of the spectrum and the ampli-

tude of constituent sinusoids is utilized to quantify the fault severity. As all the algorithms

require only the single phase stator current, the reliability is increased, and the complexity

and the cost of using additional sensors is reduced. This thesis primarily deals with de-

tection of rotor faults of SCIMs like Broken End Ring (BER), Broken Rotor Bar (BRB),

and Eccentricity (ECC) faults. Evaluation of threshold and detectability of faults under

different conditions of load and fault severity are carried out with Empirical Cumulative

Distribution Function (ECDF). The condition monitoring system has been tested in a lab

xiii



setup of 22 kW induction motor. It is found that BRB can be detected with a false alarm

rate of 3% corresponding to a missed detection of 20%. ECC was detected with 3% missed

detection without any false alarms. To test the fault detection algorithm with conditions

that are difficult to emulate on the experimental motor, a Real-Time (RT) SCIM fault sim-

ulator is also developed. This simulator is mathematically based on the Coupled Circuit

Model (CCM). Both the fault detector and the simulator are implemented on the hardware

using Simulink Real-Time (SLRT) from Mathworks.

Keywords: Autocorrelation matrix, Broken rotor bar, Broken end ring, Closely spaced

sinusoids, Couple Circuit Modeling, Extended Kalman filter, Eccentricity, Fault Detector,

MCSA, MUSIC, Online Implementation, Rayleigh-quotient, Simulink Real-Time, Squirrel

Cage Induction Motor
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C H A P T E R 1

Introduction

1.1 Background

Squirrel Cage Induction Motors (SCIMs) are the primary motive force provider for any

industry and railway transportation. The prevalent maintenance practice of SCIMs in most

industries is based on periodic supervision and servicing. Periodic maintenance results in

unnecessary expenses and operating equipment and components for suboptimal periods.

In the worst case scenario, a component may get completely damaged before the time for

its next scheduled maintenance arrive. The SCIM faults in their inception are incipient

in nature. As a result, the effect of the fault does not affect the operations drastically.

However, the sustained activity under incipient defects can lead to severe damage and

abrupt stoppage of the operations. A way out to obviate from the periodic maintenance

is by shifting to condition-based maintenance that would require the detection of incipient

faults at an earlier stage. A diagnostic module with preemptive fault detection features is a

critical and prudent necessity for condition monitoring of SCIMs. This module can improve

the reliability and integrity of the SCIMs and aid in avoiding unwarranted downtime.

The advantages offered by AC drives and induction motors have changed the scenario

with Indian Railways adopting AC induction motors in a big way. A locomotive engine

employs a variety of SCIMs for operations ranging from providing tractive power to cooling

and keeping the locomotive dust-free. Due to restricted availability of space in the loco-

motives, redundancies are nonexistent. Because of this, any outage of any of the machine

drastically reduces the capability of the locomotive and can even completely disable it.

Faults in the bearings, rotors and electrical faults like winding short circuit, occurring in

the motors drastically affects the locomotive performance. It, therefore, becomes necessary
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to have monitoring systems of the motors available in a locomotive that would be able to

diagnose the health and fault levels of the motors.

Condition monitoring of inductor motor requires an extensive study of the different types

of faults and the available detection methodologies. A fault is defined as the an unpermitted

deviation of at least one characteristic property of the system from the acceptable, usual

and standard condition [1]. Faults are incipient in nature, so even if there is a fault in

the system, the system may operate as a normal system with subtle deviation in its states.

Fault diagnosis consists of three different steps, 1. Fault detection, 2. Fault Isolation -

localization or classification of the fault, and 3. Fault identification - determination of

type, magnitude and cause of the fault. Failure is defined as the permanent interruption

of the system’s ability to perform the required functions, [1]. If faults are not detected

and proper maintenance has not been taken, the faulty system leads to complete failure

resulting in loss of productivity. Failure prognosis consists of early detection of incipient

faults and predicting the remaining useful life before failure. In this research, an onboard

and embedded condition monitoring system for SCIMs is envisioned for improving their

reliability and reducing their cost of maintenance. The primary research issue is related

to the detection of weak and incipient faults under various load conditions when the fault

signatures are difficult to detect. The other areas are related to selection and placement of

sensors, proper signal conditioning, detection of multiple combined defects, efficient online

implementations, etc.

Faults in SCIMs can be broadly classified into rotor faults, stator faults, and bearing

faults. Each fault class can further be subclassified as given below

i. Rotor Faults

• Broken Rotor Bar

• Broken End Ring

• Eccentricity Fault

– Static Eccentricity

– Dynamic Eccentricity

– Mixed Eccentricity

ii. Bearing Faults

• Inner Raceway Fault

• Outer Raceway Fault

• Rolling Element Fault

iii. Stator Faults

• Inter turn short circuit
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• Phase to phase short

• Phase to ground short

This thesis is mainly concerned with the class of rotor faults. A brief literature review about

the different rotor faults along with the sensors and signals that are used is given below:

1.1.1 Broken Rotor Bar and Broken End Ring Faults

These faults are said to occur when due to stress or mechanical defect, the rotor bars or

the end ring, which holds together the bars are damaged. Photographs to illustrate the

occurrence of BRB of a 750 KW traction motor is shown in Fig. 1.1a. These damaged

motors were found during the periodic maintenance in their respective maintenance sheds.

The motor on the continual run with single BRB fault, develops multiple bar cracks, as

found in Fig. 1.1b. Leading causes of these failures are attributed to manufacturing de-

fects, unbalanced magnetic pull due to load transients and asymmetrical loading patterns.

[2]. The occurrence of eccentricity related anomalies can also lead to unbalanced magnetic

pull, which may result in BRB. This fault results in unbalancing of the rotor that causes

unbalance in the motor magnetic field. The unbalanced magnetic field is decomposed into

positive and negative sequence components. These positive and negative sequence compo-

nents of the unbalanced magnetic field induce multiple fault frequency components on both

side of the fundamental frequency given by [3, 4, 5, 2]

fbrb = fber = (1± 2ks)fo (1.1)

Where s is the slip, k is any integer, and fo is the supply frequency. According to [2],

the lower side components are due to BRB and BER while the upper ones are for speed

oscillations. It is also shown in [6], that the magnitude of the frequency component can

quantify the severity of the fault. Other higher order components for BRB are given by [2]

fbrb =

[(
k2
p

)
(1− s)± s

]
fo (1.2)

where, the symbols have their usual meaning with k2/p being any positive integer and p

is the number of pole pairs. Initially, small cracks may develop in the structure, but with

prolonged usage, these may develop into more severe defects and may eventually lead to

multiple faults due to uneven thermal stress because of localized heating. If left undetected,

this can result in stator-rotor rub. It is, therefore, of utmost importance, that these faults

are detected in its inception. The multiple BRB fault considerably distorts the stator cur-

rent and hence become conspicuously visible in the spectral signature. However, modulation

of the stator current due to single broken bar is weak, [6]. Closely spaced components es-

calate the difficulty of its detection. The onset of BRB degrades the performance of the

motor and results in modulated stator currents. Other consequences are torque pulsation
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with reduced average torque, rotor speed pulsation with reduced speed, increased losses,

decreased efficiency and excessive heating, etc. [7, 8]. Detecting weak faults in low load

condition is of great interest to the research community. In this case, the fault components

are very close to the supply frequency. As a result, detecting the fault component requires

the fundamental to be suppressed adequately without affecting the closely spaced fault

frequency. This is accomplished by using a sharp notch filter. However, there are imple-

mentation issues, which require the notch filter to be redesigned when there is a change of

the fundamental frequency. Moreover, as the sidebands are very close to the fundamental

in low load condition, there might arise conditions when the notch filter suppresses the

sidebands. As a result, the central frequency of the notch filter should be able to track

the fundamental frequency, and its cutoff bandwidth should be adaptive to the slip. In

designing unsupervised embedded systems, designing notch filter with these characteristics

can be inconvenient.

Jung et al. [9] gave an overview of a full system for implementation of an efficient

multiple fault diagnosis system. This proposed system includes an optimum slip estimator,

proper sample selector and a frequency auto-search unit. The algorithm was implemented

on a DSP board with illustrative results. One of the major problem in detection of BRB

is the false alarm caused by the load torque oscillations. New indicators of BRB, which

are independent of load torque oscillations were proposed in [10, 11]. Spectral signatures

occupying higher bands and independent of load torque oscillations can be found in [12].

Using slot harmonics as potential indicators of BRB was showcased in [13]. Flux [14],

instantaneous power factor with phase [15] and air-gap torque [16] were used to mitigate

the problems faced by MCSA due to the load torque. Intelligent use of familiar signal

processing techniques for better resolution and computational efficiency were demonstrated

by [17]. Techniques like frequency signal dimension order [18] and zooming [19] were used

to modify the MUSIC algorithm to improve the resolution. Fault components of BRB are

heavily dependent on the slip. Studies to make the fault indicators independent of the slip

were presented in [20] using optimized time-frequency representations with hidden Markov

models and Mahalanobis distance metric as classifiers. Using stator current envelopes as

a feature for fault detection was presented in [21]. The amplitude of the fault-specific can

quantify the severity of BRB and BER fault. Quantifying the number of broken bars from

the current spectrum is shown in [22, 6]. In [23] Total Least Square ESPRIT (Estimation

of Signal Parameters via Rotational Invariance Techniques) was used estimating the fault

frequency components. Subspace based methods cannot estimate the amplitude of the fault

components required for assessment of BRB fault. Simulated annealing algorithm was used

to determine the amplitude and hence the fault severity in [23]. Using startup transients

as a potential signature for detection of BRB was popularized with wavelet decomposition

in [24]. In this paper, wavelet decomposition is used for detection of outer cage faults of

double cage induction motors. In [25] ESPRIT with zooming technique was used for better

resolution. The amplitude was estimated using least square estimation, which is equivalent
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(a) Single BRB fault

(b) Multiple BRBfault

Figure 1.1: Reported BRB in different locosheds. Photo Courtesy: Indian Railways

to computing DFT (Discrete Fourier Transform) for a single frequency. Though efficient,

this method is not suitable for finding the amplitude of closely spaced sinusoids [26]. More-

over, with regards to the development of a complete fault detection system, estimation of

speed and the fundamental frequency are not discussed elaborately. For investigation of

induction motor with BRB fault from stator current, the fundamental component needs to

be suppressed adequately for the detection. Most of the research concerned in this area

have used spectral estimation for fundamental frequency estimation followed by notch fil-

tering for removing the fundamental. In low load condition, this can lead to suppression

of the fault specific components also. Detection of faults in low load condition was accom-

plished by Hilbert modulus with FFT [27] and Hilbert modulus with ESPRIT [28]. The

least slip reported are 0.2% and 0.33% respectively. Effect of simultaneous occurrence of
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static eccentricity, BRB and speed ripples were studied analytically and experimentally in

[29]. Analyzes with other additional conditions can be found in [30]. Detection of BRB in

low load condition with load torque effect can be found in [31]. Here, the diagnosis was

performed using continuous and discrete wavelet transform of startup transients. Though

fault detection with startup transients is rich, more work is required with transients under

load changes. [32] developed an empirical mode decomposition based method for direct, and

inverter fed motors to detect BRB. In most of the works, the fault severity is determined for

multiple bar breakages. In this thesis, a single bar is broken in different levels to emulate

weaker and incipient BRB faults.

1.1.2 Eccentricity Faults

Eccentricity related faults occur when there is an uneven air-gap between the stator and

the rotor, [2]. A substantial value of eccentricity can result in an unbalanced magnetic

pull that in turn can result in stator-rotor rub or even BRB fault. Similar to the BRB

fault, eccentricity fault also creates unbalance in the magnetic field and as a consequence,

fault frequency components are induced in the motor armature current. The Frequency

components due to this class of fault are given by [2, 33]

fecc =

[
(kR± nd)

(1− s)

p
± v

]
fo (1.3)

Where R is the number of rotor slots. v is the order of the stator time harmonics that

are present in the power supply driving the motor, (v = ±1,±3, ...), and nd is the variable

depending on which eccentricity related faults can be classified as given below.

i. Static Eccentricity - Under this condition, the position of the minimum radial air gap

remains constant, caused due to ovality of the stator or imperfect positioning of the

rotor. Mathematically nd = 0 in (1.3). Static eccentricity fault is illustrated in Fig.

1.2a. It is observed that, in this case, the axis of rotation does not coincide with stator

axis but is same as the rotor axis. As a result, a non-uniform stationary air-gap is

created, which does not rotate with the rotor.

ii. Dynamic Eccentricity - In case of dynamic eccentricity the axis of rotation does not

coincide with the axis of the rotor. However, the axis of rotation and the stator axis

are same, and the position of the minimal air gap rotates with the rotor. Mathe-

matically, frequency components can be modeled by putting nd = 1, 2, 3, ... in (1.3).

This phenomenon can be visualized in Fig. 1.2b. This misalignment is caused by

several factors such as bearing wear, misalignment, bent rotor shaft, and mechanical

resonance due to the oscillation of shaft speed.

iii. Mixed Eccentricity - In reality, both the static and dynamic eccentricities tend to

coexist in a motor. This fact was found to be true for all the motors that were under
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this study. When they exist together, the condition is known as the mixed eccentricity.

In this case, none of the three centers coincides with each other as illustrated in Fig.

1.2c.

(a) Static eccentricity (b) Dynamic eccentricity (c) Mixed eccentricity

Figure 1.2: Illustration of different eccentricity faults

With increasing eccentricity, the resulting unbalanced forces known as the Unbalanced

Magnetic Pull (UMP) can cause stator-to-rotor rub, which can damage the stator and the

rotor [2]. At times, the eccentricities in the rotor are tolerated to some extent as a natural

manufacturing defect as it cannot entirely be done away with, especially for heavy rotors

causing a steady UMP in one direction. This might result in the development of some degree

of dynamic eccentricity. Unless detected early, these effects slowly develop into stator or

rotor rub, causing a major breakdown of the motor. As a standard practice in the industrial

use, air gap eccentricity up to about 10% is permissible [2, 34]. However, manufacturers

keep the total eccentricity level even lower to minimize UMP as well as to reduce vibration

and noise. The occurrence of air-gap eccentricity results in an asymmetrical stator and

rotor circuit inductances as well as degradation of motor performances.

For most of the works, the load torque is considered to be constant. In case of varying

load torque, the spectral components produced by the load overlaps with the faults asso-

ciated with BRB and eccentricity. Schoen et al. in 1995, discussed this effect in [35]. It

was also proposed, that the fault component can be distinguished when the load charac-

teristic is known. Identifying dynamic eccentricity components from load-torque oscillation

was successful using Wigner distribution in [36] and with instantaneous active and reactive

power in [15]. Rotor slot harmonic and eccentricity related faults components are available

only for a particular combination of number of rotor slots and the number of fundamental
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pole pair as established in [37, 33] and the relation is given by

R = 2p[3(m± q)± r]± k (1.4)

where, (m± q) = 0, 1, 2, 3, ..., r = 0, 1 and k = 1, 2.

Low-frequency components for motors not adhering to this combination can be diag-

nosed for eccentricity faults by

fmixed = |f ± kfr| (1.5)

where, fr = (1 − s)fo/p and k is any integer. In [37] it is shown how this component

can be used for sensorless speed estimation method, which has been utilized in this thesis

for valid estimation of speed using the inherent mixed eccentricity component. Stator

current is inherently non-stationary in nature due to non-uniform load torque and variable

supply frequency. In this case, time-frequency based fault detection methods are a necessity.

Time-frequency analysis with wavelet packet decomposition [38] and Gabor wavelets [39]

are available. Low-amplitude fault components in the vicinity of the fundamental supply

frequency are very difficult to distinguish. [40, 15, 41] have used the instantaneous power

to circumvent this problem. The Power signal is derived by modulating the supply voltage

with the current signal. As a result, the fundamental component is shifted and separated

from the fault components. This method requires a high-voltage sensor, that is costly for

embedded solutions with low-voltage acquisition modules. Detection of faults with complex

apparent power analysis was carried out in [42]. Knight and Bertini in [43] and Nandi et al.

in [44] have developed setups for systematic and rigorous experimentation of eccentricity

and bearing faults. For experiments with SCIMs connected with drives can be found in

[34, 45, 46]. Use of Artificial Neural Networks (ANN) for fault classification based on

thresholding were presented in [34]. These methods require the features to be extracted

from the motor running under different operating conditions for proper training of the

network. Other method based on ANN can be found in [47]. Use of Fuzzy Min-Max with

Classification and Regression Tree (FMM-CART) for detection of eccentricity can be found

in [48]. Detection of eccentricity with the terminal voltage switched off [44] and under

standstill condition with pulsating input from the drive [45] are also famous. Condition

monitoring of SCIM with eccentricity fault with online implementation is shown in [49].

Practical quantification and safe operating condition of the motor under various load with

eccentricity fault were discussed in [50]. Instead of using current and voltage signatures, a

Rogowski coil was used for analysis of the external magnetic field for eccentricity fault in

[51]

Effect of slotting on mixed eccentricity with experimental validation was carried out

in [52] with a dual-stator winding SCIM. Finite element model based detection of mixed

eccentricity was accomplished in [53] by comparing the spectrum of a healthy simulated
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model with the faulty motor. Effect of load variation [54], magnetic saturation [41] and

stator inductance fluctuation [55] on static and dynamic eccentricity with Time Step Finite

Element Model (TSFEM) and modified winding function model of SCIM are also available.

Dorrell in [56] studied the effect of rotor flux, the number of bars and saturation on source

and characteristic of UMP for static and dynamic eccentricity.

The frequency components obtained from literature is tabulated in Table 1.1.

Table 1.1: Theoretical fault frequency components, with p = 2

Sl. No. Fault R Spectral Signature

1 BRB/BER NA (1− 2s)fo (1 + 2s)fo
(1− 4s)fo (1 + 4s)fo

2 Static 28 (13− 14s) f0 (15− 14s) f0
Eccentricity (11− 14s) f0 (17− 14s) f0

(9− 14s) f0 (19− 14s) f0
40 (19− 20s) f0 (21− 20s) f0

(17− 20s) f0 (23− 20s) f0
(15− 20s) f0 (25− 20s) f0

41 (39− 41s) f0/2 (43− 41s) f0/2
(35− 41s) f0/2 (47− 41s) f0/2
(31− 41s) f0/2 (51− 41s) f0/2

3 Dynamic 28 (25− 27s) f0/2 (29− 27s) f0/2
Eccentricity (21− 27s) f0/2 (33− 27s) f0/2

(27− 29s) f0/2 (31− 29s) f0/2
(25− 29s) f0/2 (33− 29s) f0/2

40 (39− 41s) f0/2 (43− 41s) f0/2
(37− 41s) f0/2 (45− 41s) f0/2
(37− 39s) f0/2 (41− 39s) f0/2
(33− 39s) f0/2 (45− 39s) f0/2

41 (20− 21s) f0 (22− 21s) f0
(18− 21s) f0 (24− 21s) f0
(19− 20s) f0 (21− 20s) f0
(17− 20s) f0 (23− 20s) f0

4 Mixed NA (1 + s) fo/2 (3− s) fo/2
Eccentricity

1.1.3 Signals and Sensing Techniques for Fault Detection

Fault detection of SCIM demands detection of faults well in advance while the motor is still

operational to avoid unscheduled maintenance and prolonged downtime. Fault detection

can be accomplished by analyzing a variety of signals from the motor like

i. Vibration signal is one of the most popularly sensed signals for fault detection of

9



Introduction

mechanical subsystems [57, 58]. Most of the anomalies of a motor like BRB [59, 60],

eccentricity [57], inter-turn short circuit [58, 61, 62, 63], and bearing [58, 64, 65] faults

can be detected using vibration. One of the major drawback is the effective placement

of sensors. Additionally, it requires an elaborate instrumentation arrangement for

proper working and is very costly and fragile.

ii. Magnetic fields for fault detection of SCIMs deals with the acquisition of magnetic flux

with a search coil wound around one of the stator tooth [14, 51]. This method needs

compound sensor arrangement and fixations for each motor. Search coil based fault

diagnosis requires the installation of pick-up coils at appropriate places to capture the

flux pattern near stator slots or on the frame of the motor. It is not always feasible to

use search coils on all machines to monitor the fault modulated flux signal. It is also

difficult to locate the best position of the search coils to capture the signal modulated

by the faults efficiently. Moreover, static and dynamic characteristics of the search

coil might interfere with the detection procedure.

iii. Supply voltage modulation is also used effectively for detection of SCIM faults as

shown by [66]. However, the major disadvantage lies in the fact that the sensor has

to be attached to either of the supply or motor terminals. In cases like that of the

locomotive systems, most of the motor terminals are out of reach and acquiring high

voltage signals can pose a safety issue. For an instance, the terminal voltage of a 750

kW traction motor may reach to 2.5 kV at rated speed. Also for a motor driven by

Variable Frequency Drive (VFD), it is very difficult to detect the voltage modulation.

iv. Active-reactive power analysis [67, 15] was popularized due to its effectiveness for

analyzing the motor under time varying loads, and its ability to distinguish between

rotor fault and load torque oscillations. However, acquiring voltage signals for this

method is challenging.

v. Acoustic signals were the earliest known signs utilized by human to detect the fault

in a system. In case of a motor, acoustic signal were employed by [57] to detect rotor

eccentricity. Though potent for a single motor, the problem escalates when multiple

motors operate in tandem. Detection and isolation of faults from multiple sources

within an enclosed environment like the locomotive engine is an arduous task.

vi. Thermal field analysis [68] and Thermal imaging [69], although used widely used for

fault detection in various heavy industries, are not very familiar in the case of induction

motors. Thermal field analysis is a model based approach, where the temperature

distribution and the heat loss are found in terms of the electromagnetic field. Further

details can be found in [70]. Thermal imaging is based on finding the temperature

distribution using thermal imaging technologies.
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Extracting fault-significant information from thermal images is complicated due to

the outer metallic cover of motors. However, It can be used for detection of the stator

and the bearing related failures.

vii. Current signal [37, 71, 72, 9, 17, 73, 27, 6, 74, 39, 25] is most widely used for motor

fault detection due to multiple reasons. Most of the motor faults can be detected

from current, the methods are independent of motor parameters and acquiring current

signal is non-invasive due to the availability of clamp-type Hall sensors. These sensors

are clamped around the cable for sensing and need not be placed on the motor or the

terminals. Fault detection methods concerned with stator current came to be known as

Motor Current Signature Analysis (MCSA). A marked disadvantage of MCSA is that

it is only valid for the motor operating under steady state condition, or the acquired

signals are statistically stationary. Although, this problem can be circumvented with

time-frequency analysis tools. However, spectral analysis of the stator current is the

most popular technique [2].

Most of the embedded design strategies in recent past were limited to Field Pro-

grammable Gate Array (FPGA) and Digital Signal Processor (DSP) based systems. A

brief overview of some of the systems are given below:

Khan et al. in [75] implemented an online wavelet-based SCIM fault detection system.

Texas Instrument’s board with 32bit floating point processor, TMS320C31 was used for this

development. [76] have identified BRB by the online application of a detection algorithm

on a DSP commercial board, TMS320F28335. Hardware development with a low-cost

FPGA-based online system for BRB detection was demonstrated in [77]. The detection

scheme is based on the Discrete Wavelet Transform (DWT) of the startup current to identify

fault during motor startup. XC3S200 Spartan-3 FPGA from Xilinx was used for online

implementation. [78] have reported the development of an FPGA-based special purpose

System-on-a-Chip (SoC) solution for online detection of half BRB fault in SCIM. This

method used both current and the 3-axis vibration signal to improve the detectability

under various loading conditions. XC3S500E Spartan-3 FPGA from Xilinx is used for

online implementation. [79] have implemented another FPGA based online system to detect

induction machine faults. The system works based on the Entropy and Fuzzy Inference to

detect multiple combined SCIM faults. FPGA Cyclone-II EP2C35F672C6 from Altera is

used for online implementation.

1.2 Motivation and Objective

The absence of proper condition monitoring systems in industries like the Indian Railways

is the major motivation for this study. Some of the issues in designing such a system along

with the objective for this research is provided below:
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i. Online condition based monitoring as opposed to scheduled monitoring and mainte-

nance of SCIMs can be advantageous in many ways. Periodic maintenance might be

sometimes unnecessary, and sometimes the motor may be sufficiently damaged before

any maintenance is carried out. This maintenance procedure results in high cost and

loss of valuable human labor. An embedded online system for assessment of the con-

ditions of an SCIM to avoid unnecessary periodic maintenance is the primary aim of

this research.

ii. Experiments with large induction motor with the required loading arrangement are

very difficult to conduct under laboratory condition. Emulating a combination of

faults as well as faults under various physical conditions like variable loading for gen-

erating fault signatures is essential for testing the fault diagnosis system. Conducting

these studies with the experimental motor can be detrimental to its health and is

unsafe to be operated with faults. Operating SCIMs with fault can damage the motor

permanently, is costly and have safety related issues. For this reason, development of

an SCIM fault simulator is essential, that can simulate different faults under various

physical conditions.

iii. Condition monitoring of SCIMs require accurate identification and quantification of

fault specific frequency component. The fault components are of a small magnitude

and very close to other significantly larger components thus making its detection

and identification difficult. Subspace-based methods like MUSIC can circumvent this

problem. However, subspace-based methods require model order information, cannot

quantify the degree of fault and are computationally intensive. Hence, development of

a high-resolution low-complexity spectral estimator suitable for detection and quan-

tification of induction motor fault is paramount.

iv. Most of the faults are initiated from an incipient stage. It is always advantageous to

detect these condition in their inception when the fault is weak. A weak fault does

not significantly affects the operations, and its signature is also feeble. Efficient signal

conditioning strategies are needed to detect these faults. Extended Kalman Filter

(EKF) based methods have shown promising results to this end.

1.3 Organization of the Thesis

The thesis is organized as follows:

Chapter 1: Introduction - This is the introductory chapter and it presents the existing

literature for fault diagnosis. It gives an overview of sensors, systems and algorithms used

for detection of BRB and eccentricity faults. This chapter ends with a discussion of the
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motivation and objective of this research.

Chapter 2: Development of the Proposed Spectral Estimator - Presents the Rayleigh

quotient-based spectral estimator with its derivation and evaluates the performance of the

spectral estimator and compares it with MUSIC and DFT. This chapter also derives the

relation for determination of accurate amplitude from the spectral peaks.

Chapter 3: Development of the Real-time SCIM Fault Simulator - Presents an insight

into the development of the RT SCIM fault simulator with simulation results of different

faults with varying degrees of the defect, under various conditions of loading.

Chapter 4: Induction Motor Weak Fault Detection Algorithm - Discusses the fault

detection system with full analysis of the faults emulated on the experimental setup. This

chapter thoroughly discusses the different subsystems of the fault assessor like signal condi-

tioning, slip and fundamental frequency estimation, and determination of thresholds which

are vital for successful detection of faults.

Chapter 5: Embedded System Development for Online Fault Diagnosis - Presents the

embedded system development schemes for single fault detection, multiple fault detection,

spectral estimation, and fault simulation.

Chapter 6: Conclusion and Future Directions - Presents the contribution and conclud-

ing remarks of the thesis along with the future research directions.
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C H A P T E R 2

Development of the Proposed

Spectral Estimator

It is well established that spectral analysis of the stator current is one of the most reliable

methods of detecting SCIM faults. The classical problem of detecting low-amplitude sinu-

soids in noise has gained prominence in the recent years for MCSA-based fault detection.

Most of the fault frequency components have feeble magnitude and are very close to other

significant components in the frequency spectra. Moreover, these components are motor

slip dependent. As a result, the location of the components changes with time. It, there-

fore, accentuates the need for developing spectral estimators that can detect closely-spaced

low-amplitude sinusoids in noise with the least number of samples. For the detection of

BRB fault, the situation is more complicated because the fault frequency components are

in close vicinity of the fundamental. The amplitude of the fault frequency component is a

measure of the severity of a fault. It is advantageous if the spectral estimator can reliably

determine the sinusoidal amplitude at various frequency component on the spectrum. For

online fault monitoring, the spectral estimator will run on an embedded platform. Online

and embedded applications require the algorithm to have low computational complexity.

The aim of this chapter is to develop a spectral estimator with the following properties:

• Resolve closely spaced sinusoids.

• Detect low amplitude sinusoids buried under noise.

• Determine the accurate amplitude of constituent sinusoids.
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• Low computational complexity

The proposed spectral estimator will be used for offline as well as online fault analysis of

the motor for both the simulator as well as the experimental setup. The Performance of a

spectral estimator can be judged by its resolving power and its accuracy in detecting them.

In this chapter, the resolving power is determined through the Probability of Resolution

(POR) and its accuracy is established through error estimates simulated under various

conditions. A general framework for the hardware implementation of the spectral estimator

will be discussed in chapter 5.

2.1 The Signal Model

The signal is assumed to have the following model:

x[n] =
P∑
i=1

sie
j(ωin+ϕi) + ν[n];n = 0, 1, · · · (2.1)

Where x[n] is the n-th instant of the input signal and is considered to be complex exponential

with additive white Gaussian noise ν[n]. P is the number of sinusoids. Each sinusoid has

an amplitude si , with random phase ϕi, and normalized frequency ωi, given by 2πfiTs.

Ts is the sampling period. An experiment was conducted with a test signal obtained from

(2.1) to demonstrate the resolving power of each estimator with 1024 frequency points. For

this experiment, four real sinusoidal signals with unity amplitude and frequencies of [45,

50, 51, 60] Hz was used. Sampling frequency was kept at 1000 Hz. A brief overview of the

different spectral estimator prevalent in fault detection are given below:

2.2 Discrete Fourier Transform

Any finite energy stationary signal can be represented by a linear combination of complex

exponentials. The representation of the signal in terms of spectrum of coefficients is accom-

plished with Discrete Time Fourier Transform (DTFT) of a discrete time-series x[n] and is

given by

X(ω) =

N−1∑
n=0

x[n]e−jωn (2.2)

Now, in this method the frequency components are distributed over a continuous spectral

band that is not suitable for digital implementation and computation. As a result, Discrete

Fourier Transform (DFT) was formulated. In this method, the frequency is represented as

a function of an integer k. For a finite time series x[n] of length N , the N-point DFT is
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2.3 Power Spectral Density

given by

X[k] =

N−1∑
n=0

x[n]e−j 2πkn
N (2.3)

DFT has a computational complexity of O(N2). Computational complexity of DFT

was reduced to O(Nlog2N) with a class of algorithms commonly known as Fast Fourier

Transform (FFT). Spectrum with FFT implementation is shown in Fig. 2.1.

2.3 Power Spectral Density

Power spectral density is defined as the Fourier transform of the autocorrelation sequence

rxx. It is given by

Px(ω) =
∞∑

k=−∞
rxx(k)e

−jkω (2.4)

where the autocorrelation sequence, rxx(k) = lim
N→∞

1
N

N−1∑
n=0

x(n+k)x∗(n). There are different

ways of estimating power spectrum. One such traditional method is Welch’s method of

averaging periodograms for better accuracy as shown in Fig. 2.2.

2.4 Subspace Based Spectral Estimators

The methods discussed above are not suitable for signals where the sinusoids are closely

spaced, or there is a considerable amount of noise. In these scenarios, subspace-based meth-

ods are used. Subspace-based methods utilize the property of orthogonality of noise and

signal eigenvectors of the signal autocorrelation matrix. These methods can be classified

as signal and noise subspace-based methods. Signal subspace-based methods or principal

component-based methods use eigenvectors that lie in the signal subspace for their com-

putations. Whereas, the noise subspace-based methods or minor component analysis are

based on the noise eigenvectors. Most of the recent studies on fault detection have mainly

concentrated on the noise subspace-based methods. Two popular methods are MUSIC and

ESPRIT. Out of these, we will discuss MUSIC with some details. MUSIC was developed

to find the direction of arrival (DOA) of two closely spaced sources in radar technology and

array signal processing. MUSIC was found to be very efficient in resolving closely spaced

sinusoids for fault detection of induction motors. In recent years, most of the research in

this domain was carried out with signal sources impinging on an array of sensors and the

problem is to find the DOA of the signals arising from these sources. The Output of the

array sensors is considered as the input signal for the spectral analysis.
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Development of the Proposed Spectral Estimator

For mathematical simplicity and to maintain a similar structure with the existing works,

the model in (2.1) is represented by a finite order sequence in a vector-matrix form. The

order of this sequence is determined by the autocorrelation matrix size (L) which results in

truncation of the infinite order time-series into finite order samples. The finite vector x of

x[n] is given by

x = As+ v (2.5)

where s ∈ C
p×1 is the vector of P complex amplitudes with random phase

s = [s1e
jϕ1 , s2e

jϕ2 , ..., spe
jϕP ]T (2.6)

and A ∈ C
L×P is the complex source array matrix given by

A = [a(ω1), a(ω2), ..., a(ωp)] (2.7)

where a(ωi) = [1, ejwi , ..., ejωi(L−1)]T The noise vector v is given by

v = [ν (1) , ν (2) , ..., ν (n)]T (2.8)

The covariance of the input signal is given by

Rx = E[xxH] + σ2I

= AE[ssH]AH + σ2I

= ARsA
H + σ2I

(2.9)

Where, σ2 is the variance of the noise and I is the L × L identity matrix. Here, L

is the size of the autocorrelation matrix. The largest P eigenvalues of Rx represent the

P sinusoidal components present in the signal, while the other m = L − P eigenvalues

represent the noise. Similarly, the eigenvectors corresponding to the P eigenvalues belongs

to the signal subspace, whereas the rest, represented by v belongs to the noise subspace.

The spectral peaks of MUSIC are estimated by

ĥ(ω) =
1

m∑
i=1

|w(ω)T vi|2
(2.10)

where w(ω) =
[
ejω·0 ejω · · · ejω·(L−1)

]H
, ω = 2πf/Fs. Where f ∈ [0, Fs/2] , and,

therefore, ω ∈ [0, π]. It is observed from Fig. 2.3 that MUSIC is able to resolve the closely

spaced frequency components whereas, FFT and PSD are not successful in doing so. MUSIC
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2.5 The proposed Spectral Estimator

is known as a high-resolution spectral estimator as it can resolve sinusoids that are closer

than their Fourier limit given by Fs/L. It is also observed that MUSIC has a very smooth

spectrum. As a result, false detection of sinusoids due to spurious peaks is very low as

compared to the other methods. Initially, FFT and PSD were used as spectral estimators

for SCIM fault detection due to their simple implementation. However, these estimators

are unable to resolve closely spaced sinusoids, which is crucial for the detection of weak

faults under low load condition. MUSIC can detect the low-magnitude fault components.

However, high computational complexity and accurate knowledge about the number of

sinusoids in the input signal are the major drawbacks of MUSIC. The spectrum obtained

with MUSIC with the test signal is shown in Fig. 2.3.

2.5 The proposed Spectral Estimator

In recent years, methods such as MUSIC [17] and ESPRIT [25] have surpassed the classical

method of the power spectrum by leap and bounds through it robustness and resolution

capacity for fault detection of SCIMs. However, eigen decomposition of the autocorrelation

matrix in MUSIC makes it difficult for embedded and RT applications. In this work,

successful implementation of MUSIC in RT environment was accomplished, although with

limitations of accuracy and sampling frequency. In this chapter a Rayleigh quotient-based

spectral estimator is proposed. The proposed spectral estimator can resolve closely spaced

sinusoids, with lower computational complexity compared to MUSIC. The proposed method

can also estimate the relative amplitude of constituent sinusoids accurately unlike MUSIC.

This method, as opposed to MUSIC, requires only a vector-matrix multiplication instead

of eigenvalue decomposition followed by the multiplication. Also, information about the

number of sinusoids is not needed, which is critical for the accuracy of MUSIC. A brief

description of the algorithm is given below:

2.5.1 Formation of Autocorrelation Matrix

For estimating the true autocorrelation matrix (Rx), the data matrix (Xβ) is formed [80]

without any interleaved samples.

Xβ =

⎡
⎢⎣ x(0) · · · x(L− 1)

· · · · ·
x(L− 1) · · · x(2L− 2)

⎤
⎥⎦ (2.11)

Assuming the process to be ergodic, Rx is given by

R̂x =
1

L
{XH

β ·Xβ} (2.12)
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If A is a symmetric matrix with eigenvector v, then there exist a corresponding eigen-

value (σ), which can be approximated using the theory of Rayleigh quotients ([81], Pg.

301-304) as

σ =
vHAv

vHv
(2.13)

As R̂x is a symmetric matrix and w(ω) is the eigenvector ([82], Pg. 452), then, the pres-

ence of a sinusoid at ω will contribute to a peak, ĥ(ω) which is the eigenvalue corresponding

to the eigenvector w(ω) .

ĥ(ω) =
w(ω)HR̂xw(ω)

w(ω)Hw(ω)
(2.14)

where, w(ω) =
[
ejω·0 ejω · · · ejω·(L−1)

]H
and w(ω)Hw(ω) = L. The approxi-

mated eigenvalue is related to the amplitude of the sinusoid present in the input signal.

2.5.2 Mathematical Derivation

Putting the estimate of (2.12) in (2.14) gives

ĥ(ω) =
1

L2

[
(Xβw (ω))H · (Xβw (ω))

]
(2.15)

The product in (2.15) can be decomposed as given below:

Xβ ·w(ω) =

[
L−1∑
i=0

x(i)e−jωi · · ·
L−1∑
i=0

x(i+ L− 1)e−jωi

]T
(2.16)

Now, with the assumption that

Xq(ω) =
L−1∑
r=0

x(r + q)e−jωr (2.17)

and using this in (2.16) it is obtained that

Xβ ·w(ω) =
[
X0(ω) · · · XL−1(ω)

]T
(2.18)

putting the value of Xβ ·w(ω) in (2.15) gives

ĥ(ω) =
1

L2

[
X∗

0 (ω) · · · X∗
L−1(ω)

]
·
[
X0(ω) · · · XL−1(ω)

]T
(2.19)
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2.6 Evaluation of the Proposed Spectral Estimator with Probability of
Resolution

Simplifying the above, we get

ĥ(ω) =
1

L2

L−1∑
i=0

|Xi(ω)|2 (2.20)

Now taking square of the absolute value on both sides in (2.17) and putting this value

in (2.20) we get

ĥ(ω) =
1

L2

L−1∑
i=0

∣∣∣∣∣
L−1∑
v=0

x(v + i)e−jω·v
∣∣∣∣∣
2

(2.21)

Fig. 2.4 shows the spectrum obtained with the proposed spectral estimator. It is ob-

served from Fig. 2.1 and Fig. 2.2 that FFT and PSD are unable to resolve the closely

spaced sinusoids. It is also seen that the location and the magnitude of the detected fre-

quency components are not reliable. With MUSIC and the proposed methods, the frequency

components are resolved as exhibited by Fig. 2.3 and Fig. 2.4. Moreover, it is observed

from Fig. 2.4 that the peak spectral magnitude is uniform as the input sinusoids were of

equal magnitude. This fact is important, as it will be shown how these peaks are related to

the amplitude of the constituent sinusoids in subsequent sections.
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Figure 2.1: 1024 point FFT of the synthetic signal

2.6 Evaluation of the Proposed Spectral Estimator with Prob-

ability of Resolution

Resolvability of the closely spaced sinusoid is considered a vital benchmark for determining

the efficiency of high-resolution spectral estimation algorithms [83]. Computational com-

plexity and the associated execution time are the performance indices used for evaluation
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Figure 2.2: 1024 point PSD of the synthetic signal
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Figure 2.3: MUSIC applied to the synthetic signal

of spectral estimators. The Performance of the spectral estimator in terms of its resolution

capability is evaluated statistically by POR. The resolution of a spectral estimator depends

on a variety of indices. In this thesis, the POR for the proposed spectral estimator is statis-

tically evaluated in terms of its autocorrelation matrix size, the sampling frequency, and the

noise variance. The event of successful resolvability of two sinusoids (with frequencies f1
and f2) is determined by the decision statistic, γ(f1, f2) in (2.22). The event of resolution

is illustrated in Fig. 2.5. All the experiments were conducted on HP Z420 Workstation,

having 2.80 GHz Intel Xeon CPU E5-1603 processor, 16 GB RAM, and 64-bit Windows 7

operating system. The simulations were carried out with MATLAB R2014a.

γ(f1, f2) � h(fm)− 1

2
{h(f1) + h(f2)} < 0 (2.22)

where fm = 1
2 (f1 + f2) and h(fi) is the magnitude of the ith peak in the spectrum.
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Figure 2.4: The proposed method applied to the synthetic signal
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Figure 2.5: Spectral Peaks

2.6.1 Dependence on Autocorrelation Matrix Size

For accurately resolving two closely spaced sinusoids, a minimum size of the autocorrelation

matrix needs to be set. However, increasing the matrix size increases the computational

burden as evident from Fig. 2.6. For this experiment, 100 trials were carried out to find

the execution time for each L.It is also evident from this figure that the proposed spectral

estimator has a much lower time complexity for a particular L when compared to MUSIC.

The minimum size of the autocorrelation matrix required for resolving two sinusoids

was determined statistically using the principle of POR. The POR for various matrix sizes

with different noise variance is shown in Fig. 2.7. In this experiment, two sinusoids with

unity magnitude and a frequency difference of 1 Hz were considered. The sampling rate of

1000 samples/sec was taken. It is evident from this figure that an autocorrelation matrix

size of L = 970 is sufficient to resolve two sinusoids of equal magnitude with a frequency

difference of 1 Hz for a worst case scenario of 0 dB SNR.
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Figure 2.6: Execution time required for MUSIC and the proposed method for various autocorrelation
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Figure 2.7: POR for different Autocorrelation matrix size (L) with noise variance as the parameter
for the proposed spectral estimator

2.6.2 Dependence on Sampling Frequency

Fault detection of induction motors requires the input signal to be sampled by a variety

of sampling rates. Faults like broken rotor bar, broken end ring, mixed eccentricity and

estimation of speed requires low sampling rates as compared to faults of static and dynamic

eccentricity. Sampling rate plays a significant role in the resolvability of closely spaced

sinusoids. With increasing sampling frequency, the resolution performance of a spectral

estimator drops drastically as observed in Fig. 2.8. For this experiment, the sampling

frequency was varied for different values of L. The POR was determined over 100 trials for

each Fs. Sinusoidal components with a difference of 1 Hz was taken. The amplitude of each

sinusoid was taken to be unity.
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Figure 2.8: POR for different sampling sate (Fs) with autocorrelation matrix (L) as the parameter
for the proposed spectral estimator

2.6.3 Robustness of the Spectral Estimator

Noise plays a crucial role in resolving two sinusoids and also in the estimation of the ampli-

tude. It is observed in Fig. 2.9 that with an input SNR of -5dB, two sinusoids with equal

magnitude can be resolved if the ratio of Fs/L is maintained. For this experiment, the SNR

was varied from -15 dB to 15 dB and L was chosen as 1000 and Fs was 1000 Hz.
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Figure 2.9: Effect of noise on Resolution with POR

2.7 Evaluation and Comparisons of Frequency Estimation

Accuracy

It is essential for spectral estimators to provide an accurate estimate of the location of a

frequency component on the frequency spectra. In case of fault detection algorithms, an
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error may lead to inaccurate estimation and assessment of the motor condition. In this

section, experiments are performed to compare the robustness of the location estimate for

DFT, MUSIC, and the proposed method. In Fig. 2.10a mean square error between the

input sinusoidal frequency and the location of the peak obtained from the spectrum is

evaluated by 100 trials for each L. The value of L was incremented in steps of 10. Fs for

this experiment was fixed at 1000 samples/s and an SNR of 0 dB was selected. In Fig.

2.10b mean square error is evaluated with different Signal to Noise Ratio (SNR) levels for

100 trials each. Fs for this experiment was also fixed at 1000 samples/s and the L was set

to 500. A single sinusoid of 50 Hz and unity magnitude was used for both the experiments.

From Fig. 2.10a it can be inferred, that although DFT is an efficient method, its use in

fault detection should be limited to applications with longer time samples. The proposed

method is also error prone with lower values of L, but its performance is comparable to

that of MUSIC. From Fig. 2.10b, it is clear that the performance of the proposed spectral

estimator in a noisy environment is quite robust and is comparable to that of MUSIC.

2.8 Estimation of Accurate Amplitude

In this section, a brief mathematical derivation is presented to demonstrate how the pro-

posed spectral estimator is used to estimate the amplitude of the frequency components

present in the input signal. The same signal model (2.1) is used for this derivation. It is

assumed that the input signal consists of only a single component given by

x[n] = ske
j(ωkn+ϕk) (2.23)

Using the value of x[n] in (2.21) we get

ĥ(ωk) =
1

L2

L−1∑
i=0

∣∣∣∣∣
L−1∑
v=0

ske
jωk(v+i)ejφke−jωkv

∣∣∣∣∣
2

(2.24)

= 1
L2

L−1∑
i=0

∣∣∣∣skejωkiejφk

L−1∑
v=0

1

∣∣∣∣
2

= 1
L2

L−1∑
i=0

s2kL
2

= Ls2k

L−1∑
i=0

1

= Ls2k

(2.25)

Therefore, estimate of the amplitude of the sinusoid at ωk is given by
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Figure 2.10: Evaluation of location error of spectral estimator

ŝk =

√
ĥ(ωk)

L
(2.26)

Fig. 4.3 shows the accuracy of the proposed spectral estimator for determining sinusoidal

amplitude. For this trial, a single sinusoid of 50Hz with varying amplitude was taken, and

its spectral estimation is conducted. Subsequently, the peak is detected and using (2.26);

the sinusoidal amplitude is estimated. For this experiment, the amplitude was varied from

0.1 unit to 10 units in steps of 0.1. Additive white Gaussian noise with a variance of one

unit is also added to this input signal. As a result, the input signal SNR increases with

the increasing amplitude for this experiment. It is observed that the peak amplitude is

estimated with very low estimation error when compared to the input amplitude.
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Figure 2.11: Estimation of amplitude

2.9 Effect of Windowing on the Proposed Spectral Estimator

Finite and abrupt windowing of data results in oscillations in the frequency domain resulting

in spectral leakages and false peaks that can cause false alarms. This phenomenon is known

as Gibbs oscillations ([84], Pg. 491-495). This was also observed in case of the proposed

spectral estimator. Using a non-rectangular window with tapered ends can solve this issue.

However, this is achieved at the expense of the wider and diminished lobe as is evident from

Fig. 2.12. In this thesis, a Chebyshev window was used uniformly for all the experiments.
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Figure 2.12: Effect of windowing in reducing Gibbs oscillations

2.10 Summary

In this chapter, a novel Rayleigh quotient-based spectral estimator is proposed. The spectral

estimator can estimate fault frequency components with very high accuracy in noisy envi-

ronment and has a lower computational complexity than methods that require Eigenvalue

decomposition like MUSIC. It can estimate the magnitude of fault frequencies accurately

unlike subspace-based methods like MUSIC, ESPRIT, etc. Spurious peaks are avoided as
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2.10 Summary

the estimator doesn’t require the information about the number of sinusoids. This decreases

the chance of false-alarms and missed detections. Different performance indices of the spec-

tral estimator are evaluated with POR. Along with this, the accuracy of the method is also

compared with MUSIC and the classical method of DFT. It was found that the accuracy

of the proposed method is comparable to MUSIC and its computational complexity is also

much than MUSIC. Additionally, amplitude of sinusoidal components are estimated accu-

rately with this method. Taking the advantages into consideration, this method is found

more suitable for fault detection. To further improve the resolution capacity, a method of

frequency band shifting followed by re-sampling for spectral analysis popularly known as

’zooming’ technique can also be adopted.
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C H A P T E R 3

Development of the Real-time

SCIM Fault Simulator

Fault modeling is essential for testing the developed condition monitoring system of the

SCIMs. This helps in generating conditions that are difficult to emulate in experimental

setup and hence can be used to test and validate the fault detector under different operating

conditions. The aim of this chapter is to design a Real-Time (RT) fault simulator of the

induction motor from existing mathematical models instead of concentrating on develop-

ing the mathematical model itself. In this chapter, a brief introduction to the modeling

technique is followed by its RT implementation. The simulator is validated using frequency

domain signature analysis of the stator current. The frequency domain analysis is carried

out with the spectral estimator proposed in the previous chapter.

3.1 Modeling Technique

An SCIM can be mathematically modeled by three methodologies. These techniques can

be briefly classified into:

i. The simplified DQ Axis model. This model was initially developed for RT simula-

tion. It finds its application in the estimation of speed and fundamental frequency. In

this method, it is assumed that the windings are sinusoidally distributed. As a result,

dynamic simulation with arbitrary winding is not possible.

ii. Detailed modeling through Coupled Circuit Modeling (CCM) technique finds its

application in modeling of faults that are not possible in the DQ axis model. This
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method is implemented in RT environment for dynamic simulation of different rotor

faults of the SCIM.

iii. Finite Element Modeling (FEM) is the most accurate technique, but its RT

implementation is challenging.

For developing the RT simulator, modeling was carried out with CCM technique and

was developed in SIMULINK. Various faults that arise in an actual motor under different

operating conditions can be incorporated in this model. This modeling technique is based

on winding function approach that can be used for any arbitrary winding layout. The

parameters of the motor are derived from geometry and the winding arrangement. An

embedded platform is developed for implementation of the fault simulator. This platform

is loaded with the DOS based RT kernel from Mathworks popularly knows as Simulink

Real-time (SLRT). The mathematical model is developed in SIMULINK and an executable

code is generated from it. Once generated, the executable code was run on a RT platform.

Different fault signatures were produced for all the faults with the motor running under

different operating conditions.

RT simulation models for BRB, BER, and eccentricity faults have been developed,

implemented and verified with the standard motor signature. The model is found to be

fully functional for all the three type of eccentricity faults: the static, the dynamic and the

mixed conditions. Spectral analysis of the stator current is carried out to verify the models.

A brief overview of CCM techniques [85] is given below.

It is assumed that the motor has m stator circuits and n rotor bars. The model of the

induction motor can be described by the following relations in matrix-vector format.

Vs = RsIs +
dΛs
dt

Λs = LssIs + LsrIr
Vr = RrIr +

dΛr
dt = 0

Λr = LrsIs + LrrIr

(3.1)

where Vs is the supply voltage vector, Is is the stator current vector, and Ir is the rotor

current vector. Λs is the stator flux and Λr is the rotor flux. Lss is the stator self inductance,

Lrr is the rotor self inductance, and Lsr and Lrs are the stator-rotor and rotor-stator mutual

inductances. Also,

Is = [is1, is2, is3, ..., ism]T

Ir = [ir1, ir2, ir3, ..., irn]
T

Vs = [vs1, vs2, vs3, ..., vsm]T

(3.2)

where isi, iri, vsi represents the ith phase stator current, the rotor current of the ith bar,

and ith phase supply voltage respectively. The inductances are calculated with the winding
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3.2 Implementation of the Real-Time SCIM Simulator

functions [86, 87, 88]. According to the winding theory, the mutual inductance between

windings i and j is given by

Lij(φ) = μ0L0r0

2π∫
0

g−1
0 (φ, θ)Ni(φ, θ)Nj(φ, θ)dθ (3.3)

where, φ is the angular position of the rotor w.r.t a stator reference, θ is a particular angular

position along the stator inner surface, g−1
0 is the inverse air-gap function, L0 is length of

the stack, r0 is the average radius of air-gap and Ni(φ, θ) is the winding function. This

is effectively the Magneto Motive Force (MMF) distribution along the air-gap for a unit

current in i.

3.2 Implementation of the Real-Time SCIM Simulator

The motor model is designed with one mother program that automatically executes all its

sub-models at runtime. During the compilation stage, the initialization process is initiated

by the host computer in the non-RT environment. It requires the motor parameters (given

in Table 3.1) to be provided as input along with the type of fault(s) present. In this

stage, the inductance and resistance matrices containing all fault information are calculated

from different sub-models with the given initial condition. A general block diagram of the

system is shown in Fig. 3.1. This block diagram can be considered as the top most level of

abstraction of the simulator.

  Fault Information

Initialized
Matrices

Motor Parameters

Simulation
Parameters

Initialize Matrices

Simulator

Vb

Vc

Tl

Is Ir T
speed

Va

Initialization

Simulation

Figure 3.1: Top most level of abstraction for designing the realtime simulator
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Table 3.1: Technical specification and parameters of the simulated Induction Motor

Sl. No. Parameter Value

1 Power 11 kW
2 No. of Phases 3
3 Supply Voltage 230v
4 No. of Rotor Bars 40
5 No. of stator slots 48
6 No. of pole pairs 2
7 Length of stack 0.11
8 No. of stator winding turns 28
9 No. of coils per phase per pole pair 4
10 Average air gap radius 0.0008
11 Stator resistance per phase 1.75
12 Resistance of each rotor bar 3.1× 10−5

13 Resistance of each end ring 2.2× 10−6

14 Lls 0.0064
15 Inertia 0.0754
16 B 0.001
17 Lbr 9.5× 10−10

18 Ler 1.8× 10−10

19 Angle of Skewing π/6
20 Slot Opening π/86

The motor model involves creating 3D matrices in the initializing stage and accessing

them in the simulation phase. Global data store memory blocks were used for this pur-

pose. Once all the matrices are computed, an executable with the required parameters and

matrices are transferred to the target computer for RT execution. The simulation stage

sub-model is generic in nature and independent of the presence of any faults.

RT simulation involves integration. Individual approximation models are present in

the literature [87]. Instead of numerical integration, the integrand of the approximation

model was solved analytically, and a simple algebraic equation is formulated. During exe-

cution, this algebraic function is solved with input parameters instead of numerical integra-

tion. Simulated data were recorded in the target computer and were accessed by the host

machine for validation using MATLAB. Stator current for different fault conditions were

recorded and then their frequency spectrum is evaluated. A simulation time step size of

0.0001 seconds was used for the RT simulation. This is required for proper simulation of

the eccentricity related faults as the signatures of these faults appear in the higher band. A

brief overview of the algorithm is provided in Algorithm 1. Initially, both the initialization

and simulation of the algorithm was carried out with SIMULINK model. The initializa-

tion involves complex computations as it generates different inductance matrices and their

34



3.3 Validation of the Proposed Fault Simulator

derivatives for computing the flux. Using SIMULINK for this model limited the geometrical

step-size to 1/10. Currently, the initialization is carried using MATLAB scripts. This led

to much smaller geometrical step-sizes in the order of 2π/800 for the RT simulation.

Algorithm 1 Real-Time SCIM Fault Simulator

Start
Read Data � /*This file provides the mechanical design and electrical properties of the

motor. It also contains the information about the fault to be simulated
Start Initialization
Fix geometrical step size, θ = 0 : 0.1 : 2π
if Eccentricity present then

Compute Lrr,Lrs,Lsr,Lss for each θ index of motor with eccentricity.
else

Compute Lrr,Lrs,Lsr,Lss for each θ index of motor without eccentricity.
end if
if BRB and BER present then

Modify Lrr,Lrs,Lsr,Rrr for each θ index for BRB.
end if
Declare and initialize k and set θ[k] = 0, i[k] = 0
End Initialization
Start Simulation
Set simulation time (tfinal), sample time (Ts)=0.0001
while t ≺ tfinal do

Calculate Vs(t), Λs(t), and Λr(t) using (3.1)
Compute Is(t), θ(t), Te(t)
t = t+ Ts

end while
End

From the schematic diagram of Fig. 3.1 it is observed that all the input and output

interfaces are handled by the primary motor model. This model is simulated with the

required parameters under healthy and various faulty conditions. Fault specific harmonics

in the spectrum of the stator current is used to verify the presence of different frequency

components that are characteristic of a particular fault. The data is stored at a rate of

10000 samples/s. A screenshot from the target running in RT with healthy motor is shown

in Fig. 3.2.

3.3 Validation of the Proposed Fault Simulator

Spectral analysis of the stator with proposed spectral estimator (discussed in Chapter 2) is

carried out for validation of the simulator. The stator current signal, along with speed and

the generated torque are stored. The mean value of speed is used for calculating the slip.

The slip is eventually used for searching in specific frequency bands for fault signatures.

The spectral signature thus obtained is validated with the theoretical values obtained from
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Figure 3.2: SLRT target screen of simulation of a healthy motor

the literature that were discussed in Chapter 1. Some of the frequency components that

are used for this purpose is given in Table 1.1. For the faults that have the frequency

components in the lower bands as in BRB, BER, and mixed eccentricity, the data is down-

sampled by a factor of 50 units for better resolution. The effective sample rate comes down

to 200 samples/s. The search space is fixed between 45 Hz to 55 Hz for BRB and BER

faults. Whereas, for mixed eccentricity fault, the search band is fixed between 25 Hz to 27

Hz. For static and dynamic eccentricity, the down-sampling rate is restricted to 4 units. As

a result, the effective sampling rate is 2500 samples/s. The search space is fixed between

600 Hz to 1200 Hz for static and dynamic eccentricity. The value of L is set to 2048 units

for all situations.

Fig. 3.4 shows the stator current, speed, and the stator current spectrum of a healthy

motor, w.r.t BRB, and BER faults for three different loads. It can be seen from the start-up

current characteristics, that, the simulated motor replicates the real motor. It is to be noted

that the simulated motor is direct online started with three phase input. As a result, the

steady state value is reached very fast. The stator spectrum is used to draw a comparison

between the fault cases. It is observed, how the settling time of speed varies with that of the

load. Fig. 3.5 shows the motor characteristics for the motor with BER, BRB, and double

BRB faults running with 2.8% load. It is observed that the fault give rise to its specific

components even under light loads. Although, it is not very prominent for the BER fault

due to the presence of other prominent components. In Fig. 3.4, the healthy motor gave

frequency peaks in the observed band, but the components are not concerned with this class

of faults and the magnitude is also very small when compared to the faulty simulated motor

running with the same load. The simulator has successfully simulated the case of increased

level of fault with increased spectral magnitude as observed in the ’double BRB’ case. The

36



3.3 Validation of the Proposed Fault Simulator

magnitude of the fault component in the stator current spectrum increases with increased

loading. Fig. 3.6 shows the effect of increased loading on the simulated motor with BRB

and BER faults. It is observed that the fault components move away from the fundamental

component due to increased loading and there is an increase in magnitude of fault specific

frequency components. From the stator current, it is found how it is modulated in the

presence of a fault.

Successful simulation of the a motor with eccentricity fault depends on the accurate

evaluation of different inductances. The Presence of eccentricity faults modifies the induc-

tances. Fig. 3.7 shows the change in the mutual inductance between stator phase ’A’ and

rotor bar one with different faults for one complete rotation.

Simulation of the motor without eccentricity are presented in Fig. 3.8 - Fig. 3.10 to

differentiate between healthy and faulty cases. Simulation of faulty and healthy motors for

eccentricity were carried out with two classes of motor having different rotor bars (R) while

keeping the other parameters same. This leads to the simulation of situations described by

(1.4). Fault signatures of mixed eccentricity fault manifests in a low and a high frequency

band. As a result, simulation results of eccentricity are ascertained by observing these

bands. Fig. 3.8 presents the high-frequency components with R = 40, running under

different loads. Fig. 3.9 shows the high-frequency components with R = 41, with separate

loads. Changing the value of R from 40 to 41 results in additional peaks in the spectrum.

It is also seen, that, the quantity as well as the magnitude of the frequency components

decrease with increased loading for both the simulated motors. This phenomenon is more

prominent with R = 41. Fig. 3.10 shows the low-frequency spectrum of a healthy motor

with different rotor bars and load. It is observed from this figure, that, the spectral peaks

are confined to low-amplitude regimes and is lowest for R = 41. The visible peaks in the

spectrum do not abide by the eccentricity condition given by (1.5) due to the absence of

mixed eccentricity.

Fig. 3.11 - Fig. 3.13 presents the results for the simulated motor running under different

conditions of static eccentricity fault. Fig. 3.11 demonstrates the stator current, the speed,

and the spectrum of the stator current for the motor simulated with 40% static eccentricity,

R = 40, and 2.8% load. Similarly, Fig. 3.12 shows the results for the motor running with

10% static eccentricity, R = 41, and 2.8% load. Fig. 3.13 exhibits the high frequency

spectrum for the motor with R = 41, and 40% static eccentricity under different loading

conditions. With 10% eccentricity, the faults components are not distinguishable for R =

41. Similarly, for the motor with R = 40 and 40% eccentricity, the components are not

distinguishable from the healthy case. This conforms to the conditions reported in [2]. In

case of the motor with R = 41 and 40% eccentricity, there are visible components related to

eccentricity fault. It is also observed, that, these components are suppressed with increased

loading. Fig. 3.14 - Fig. 3.16 presents the results for the simulated motor running under

different conditions of dynamic eccentricity faults. Fig. 3.14 shows the stator current, the

speed, and the spectrum of the stator current for the motor simulated with 40% dynamic
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eccentricity, R = 40, and 2.8% load. Similarly, Fig. 3.15 demonstrates the results for the

motor running with 10% dynamic eccentricity, R = 41, and 2.8% load. Fig. 3.16 exhibits

the high-frequency spectrum for the motor with R = 41, and 40% dynamic eccentricity

under different loading conditions.

It is to be noted, that, the high-frequency component of these two faults are prominent

only under light load conditions and are difficult to isolate from the healthy case under such

conditions. The only discriminating factors are light changes in magnitude and location of

frequency components. With R = 41, the appearance of the low-magnitude components

can distinguish but only under very light load conditions.

Mixed eccentricity faults give rise to additional low-frequency components as defined by

(1.5) in the stator current spectrum other than the high-frequency components attributed

to static and dynamic eccentricity. These components are only present when both static and

dynamic faults are present. Fig. 3.17 shows the stator current, low-frequency components,

and the high-frequency components for the motor with R = 40, 10% static and 10% dynamic

eccentricity, operating under 2.8% load. Fig. 3.18 presents the stator current, low-frequency

components, and the high-frequency components for the motor with R = 41, 10% static

and 10% dynamic eccentricity, and 2.8% load. When compared to the healthy motor stator

current spectrum, it is observed that the low-frequency components can distinguish between

the healthy and faulty cases very easily. Whereas, the high frequency components have a

minuscule difference. Fig. 3.19 exhibits the low-frequency components for a motor with

R = 41, and 25% static and 40% dynamic eccentricity with different loads. The peak

frequency conforms to (1.5), and its magnitude decreases with increasing load.

A screenshot from the target running in RT with a faulty motor is shown in Fig. 3.3.

Figure 3.3: SLRT target screen of a faulty model, running with single BRB
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3.4 Summary

This chapter dealt with the development of an RT SCIM fault simulator. This simulator was

implemented on a hardware, and various parameters were recorded for the analysis. The

spectral estimator developed in Chapter 2 was utilized for determining the fault frequency

features of the motor simulated with different faults. These features were found to be in

agreement with the theoretical components. It was also shown, how the magnitude of the

fault components depend on the loading and the degree of the fault present. Inherently,

motors contain some amount of mixed eccentricity fault, and the low-frequency component

is found to be most suitable for detection of eccentricity faults. Moreover, the low-frequency

component can discriminate between healthy and faulty cases with high accuracy due to

large variation in the magnitude of the fault components. However, this component is

suitable only for motors with mixed eccentricity conforming the the designated rotor bar

and pole pair relation. Using the analog output of the simulator, any of its available signal

can be sent to the condition monitoring system. This is useful for RT testing and validation

of the fault-condition monitoring system.
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Figure 3.4: Healthy Motor running with (a)-(c) 2.84% load, (d)-(f) 7.05% load, and (g)-(i)13.94% load
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Figure 3.5: Motor running with (a)-(c) broken end ring, (d)-(f) single broken rotor bar, and (g)-(i) two broken bars, and with 2.8% load
for all the faults
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Figure 3.6: Motor running with (a)-(c) broken end ring, (d)-(f) single broken rotor bar, and (g)-(i) two broken bars, and with 14% load
for all the faults
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Figure 3.7: Mutual inductance between stator phase A and rotor bar one
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Figure 3.8: High frequency components of stator current spectrum with no eccentricity faults and R = 40
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Figure 3.9: High frequency components of stator current spectrum with no eccentricity faults and R = 41
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Figure 3.10: Low frequency components of stator current spectrum with no eccentricity faults
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Figure 3.11: Motor running with 2.8% load for 40% static eccentricity and R = 40
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Figure 3.12: Motor running with 2.8% load for 10% static eccentricity and R = 41
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Figure 3.13: Spectrum of the stator current of motor(R = 41) running with 40% static eccentricity with different loads
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Figure 3.14: Motor running with 2.8% load for 40% dynamic eccentricity and R = 40
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Figure 3.15: Motor running with 2.8% load for 10% dynamic eccentricity and R = 41
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Figure 3.16: Spectrum of the stator current of motor (R = 41) running with 40% dynamic eccentricity with different loads
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Figure 3.17: Motor running with 2.8% load for mixed eccentricity (10% static and 10% dynamic) with R = 40
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Figure 3.18: Motor running with 2.8% load for mixed eccentricity (10% static and 10% dynamic) with R = 41
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Figure 3.19: Spectrum of the stator current of motor (R = 41) running with mixed eccentricity (25% static and 40% dynamic) with
different loads
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C H A P T E R 4

Induction Motor Weak Fault

Detection Algorithm

The aim of this chapter is to develop efficient, reliable, and fast algorithms to detect weak

and incipient faults in SCIMs and assess their severity. A schematic block diagram to

illustrate the working of the condition monitoring algorithm is shown in Fig. 4.1. The

’Parameter Estimation’ block estimates different parameters of the motor like supply fre-

quency, speed, and slip. This block also contains the signal conditioning unit that removes

the fundamental frequency from the input stator current for better detectability. The esti-

mated fundamental frequency along with the slip is used for creating spectral search bands.

The ’fault detection algorithm’ block in Fig. 4.1 estimates the spectrum in the designated

search bands and also estimates the relative amplitude of frequency components. The spec-

tral amplitude is used by the ’decision module’ to assess the severity of the fault. These

modules together help in the detection of weak faults under variable load and supply fre-

quency conditions. The algorithm is capable of detecting faults under load condition when

the concerned faults are difficult to detect. The experiments and data analysis for BRB and

mixed eccentricity were carried on a 22 kW induction motor experimental setup discussed

in this chapter.
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Figure 4.1: The complete fault-condition monitoring system

4.1 Signal Conditioning and Fundamental Frequency Esti-

mator

Extended Kalman Filter (EKF) based fundamental frequency estimation system is designed

according to [89]. This method tracks the fundamental frequency component that is essen-

tial for forming the spectral search bands for identifying the fault frequency components.

It also estimates the instantaneous magnitude of fundamental component, which is sub-

sequently deducted from the input signal. As a consequence, the condition of the input

signal is improved, and detectability of weak amplitude sidebands close to the fundamental

is enhanced without using any notch filter.

In this method, it is assumed that the amplitude of the frequency components other

than the fundamental is negligible. The assumption is valid because the magnitude of the

fundamental component of the stator current is very high compared to the fault frequencies

in incipient stages. Hence, the signal is considered to be solely composed of the fundamental

frequency (fo) with additive noise of zero mean. The kth sample of the signal is given by

yk = Ao cos(kωo + φo) + εk (4.1)

where Ao, ωo, and φo are the amplitude, angular frequency, and phase of the fundamental

component and εk is the additive zero-mean noise. ωo is given by 2πfo/Fs, and Fs is the

sampling frequency with which the measurement is sampled.

yk = ŷk + εk (4.2)
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With ŷk being the estimated signal. This signal can be described by an autoregressive signal

model where the present sample is defined by past two samples according to the relation

ŷk = 2 cos(ωo)ŷk−1 − ŷk−2 (4.3)

The state vector is defined as

x̂k = [2 cos(ωo) ŷk−1 ŷk−2]
T (4.4)

Propagating the state from k to (k + 1)th instant we need x̂k+1, which is given by

x̂k+1 = [2 cos(ωo) ŷk ŷk−1]
T

or, x̂k+1 =

⎡
⎢⎣ 1 0 0

0 2 cos(ωo) −1

0 1 0

⎤
⎥⎦ x̂k

(4.5)

The measurement equation is given by

yk =
[
0 2 cos(ωo) −1

]
x̂k + εk (4.6)

The state and measurement equations are nonlinear function of the state and are rep-

resented as a function of the state vector by

x̂k+1 = f(x̂k)

yk = g(x̂k) + εk
(4.7)

where using (4.5) we get,

f(x̂k) = [2 cos(ωo) 2 cos(ωo)ŷk−1 − ŷk−2 ŷk−1] (4.8)

and using (4.6), we get

g(x̂k) = 2 cos(ωo)ŷk−1 − ŷk−2 (4.9)

Now, the states are propagated by using time and measurement updates using Kalman

theory (see Fig. 4.2) [90], where the states are updated using the measurement input as

given below

x̂+k = x̂−k +Kk(yk −Hx̂−k ) (4.10)

()− and ()+ denotes the pre and post measurement estimates respectively.
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The time update is done by

x̂−k+1 = Fx̂+k (4.11)

where Kk = P−
k HT (HP−

k HT + 1)−1, with P−
k = FP+

k−1F
T . F and H are the linearized

form of f(x̂k) and g(x̂k) respectively and are given by

F = ∂f(x̂k)
dxk

∣∣∣
xk=x+

k

=

⎡
⎢⎣ 1 0 0

x+k (2) x+k (1) −1

0 1 0

⎤
⎥⎦

H = ∂g(x̂k)
dxk

∣∣∣
xk=x+

k

=
[
x+k (2) x+k (1) −1

] (4.12)

The state error covariance P+
k is given by

P+
k = (I−KkH)P−

k (I−KkH)T +KkσvK
T
k (4.13)
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Figure 4.2: Propagation of states

The fundamental signal is estimated from (4.3), and the fundamental frequency is esti-

mated from (4.4) by

f̂o =
Fs

2π
cos−1(x̂+k (1)/2) (4.14)

The scheme for signal conditioning by removal of the fundamental component is shown in

Fig. 4.3.

The utility of this method is illustrated by plotting the spectrum of conditioned and

unconditioned stator current in Fig. 4.4 and Fig. 4.5 respectively. It is observed, that,

with EKF signal conditioning, the fundamental component is effectively suppressed Fig.

4.5. As a result, other closely spaced components specific to BRB faults are visible only in

the conditioned signal. For this experiment, the current signal from the lab setup was used.

The signal was sampled with 200 Samples/s. The spectral search was made in the 48-52Hz

band for both the cases.
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Figure 4.3: The signal conditioning unit.
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Figure 4.4: Spectrum of the unconditioned stator current

4.2 Estimation of Slip and Speed

Fault frequency components are motor slip dependent. For efficient detection of these

fault components, estimation of speed is paramount to the fault diagnostic algorithm. Mo-

tor speed can be measured using a speed sensor or can be estimated using soft sensing

techniques. Soft sensing techniques can be classified as observer-based [91, 92] and slot-

harmonic-based [37, 93, 94, 95] methods. The observer based method requires the acquisi-

tion of all the phase voltages and currents. It also requires accurate estimates of some motor

parameters that are difficult to evaluate and may change with time. The slot harmonics

based methods requires searching for frequency components in high frequency bands. Now,

for single-rate system design, the sampling frequency needs to be uniform. High sampling

frequency would require longer time samples for resolving frequency components, compared

to lower sampling rates. It was found that all the SCIMs used in this research carried an

inherent mixed eccentricity component defined by

fmixed = |1± k(1− s)/p| fo (4.15)
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Figure 4.5: Effect of signal conditioning with EKF on the stator current spectrum

This component was present in the stator current spectra, even when all precautions

were taken while assembling. Using the lower side band of (4.15), the slip is obtained by

s = 1− (fo − fmixed)

fok
p (4.16)

Putting k = 1 and p = 2 for the experimental motor, we get

s =
2fmixed − fo

fo
(4.17)

As the frequency component is limited to lower bands of the spectrum, detection of

this frequency component is carried out to estimate the speed from the stator current with

the same sampling rate as required for spectral estimation. The conditioned current signal

is fed into this system. The spectral estimator in Chapter 2 is used for estimation of the

frequency component. For this purpose, the spectral estimator is configured to search in

the band of 0.5fo to 0.6fo. This band was obtained from (4.17) with the slip ranging from

0% to 20% for the four-pole machine.

4.3 Relative Amplitude Estimation of Fault Frequency Com-

ponents

Accurate knowledge of the magnitudes is essential to quantify the degree of fault. Some the

fault detection algorithms reported in the literature use least square estimates for amplitude

estimation [25]. However, these methods are of little use when the frequency components

are closely spaced [80]. The proposed spectral estimator described in Chapter 2 is used to

determine the amplitude of closely spaced frequency components by (2.26).
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4.4 Effect of Windowing on Fault Detection

4.4 Effect of Windowing on Fault Detection

Windowing of the input signal prior to spectral estimation results in lower false alarms.

However, it may result in diminished peaks and lower resolving power. Effect of windowing

can be seen in Fig. 4.6. It is observed, that, the magnitude of the overall spectrum is

diminished by a factor of approximately 100. In this work, a Chebyshev window was used.
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Figure 4.6: Effect of windowing on spectrum of stator current with BRB. Motor running with 43%
load and 1.2% slip

4.5 The Experimental Setup

Experiments were carried out with a 22 kW, four-pole, and three-phase delta connected

induction motor from ABB. Power to the motor is supplied with an ABB make variable

frequency drive. Experiments were carried out for detection of weak faults. Variable loading

is achieved through rheostatic loads, with a 24 kW separately-excited DC generator coupled

to the motor as shown in Fig. 4.7. The load box for rheostatic loading can be seen in Fig.

4.8. Clamp-type Hall-effect sensors from Fluke (model: i1010s) were used to sense the

current signal. Tests were performed in off-line as well as in online mode. For off-line

data analysis, DL850v oscilloscope was used for data acquisition, with the analysis being

performed in MATLAB environment. For Online mode, experiments were carried out with

the system that will be discussed in Chapter 5. A front panel for the purpose of controlling

the motor and acquiring the signals was designed and is shown in Fig. 4.9. From this panel,

there is provision to change the supply frequency and the loading. Most of the parameters

like RMS current, voltages, and speed can also be monitored through this panel. The

experimental setup was used to validate BRB and mixed eccentricity condition. Data was

acquired using the DL850v oscilloscope with a sampling rate of 20 kSamples/s. A higher

sampling rate was chosen for creation of a standard database. For the analysis, this was
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downsampled to 200 samples/s by a factor of 100. For this purpose, a low-pass filter was

used to avoid aliasing. Each set of data was recorded for approximately 30s.

Figure 4.7: The motor-generator experimental setup

Figure 4.8: The load box

4.5.1 Design of Experiment for Eccentricity

During the experiment, it was found that one of the motors carried an inherent non-uniform

air gap. Experiment with this motor along with a comparison with a healthy motor was

conducted. Using a dial-gauge, the maximum deviation from the mean position was found

to be 0.49 mm for the faulty case. The dial gauge was positioned on the coupler between
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Figure 4.9: The front panel

the motor and the generator, and the readings were taken in steps of 0.5 mm along the

circumference of the coupler. The first reading was taken as the reference, and all the

measurement were obtained with respect to this value. The resulting variation with rotation

of the motor is shown in Fig. 4.10.
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Figure 4.10: Deviation of the coupling from a given reference for the motor with inherent eccentricity

4.5.2 Design of Experiment for BRB

Experiments were performed on single rotor damaged at three different levels as given in

Table 4.1 and shown in Fig. 4.11 for BRB.
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Table 4.1: Design of experiment for BRB

Nomenclature Drill Dia (mm) Drill Depth (mm)

Healthy BRB 0.00 0.00
Partial BRB 3.09 4.00
Half BRB 3.90 16.00
Full BRB 7.54 34.00

(a) Half BRB fault (b) Full BRB fault

Figure 4.11: Levels of BRB fault

4.6 Results and Discussion for Eccentricity Fault

The four-pole induction motor used for this experiment had 28 rotor bars. As a result,

the most prominent fault components for eccentricity related fault can be detected using

the (1.5). Fig. 4.12 - Fig. 4.21 shows the stator current spectrum around (1 + s)fo/2

and (3 − s)fo/2 for healthy and faulty cases with variable loading. It is observed that the

magnitude of the fault component is present in both the faulty and the healthy motor.

Although, there is a marked difference in the magnitude of the fault component for the

two motors. Additionally, it is also observed that the magnitude of the fault component

decreases with increased loading. This was also observed in case of the simulated motor.

The fault component for the healthy case is visible under all condition of loading. As

a result, the fault component is suitable to be used for estimation of speed with high

accuracy. Cumulative distribution function was obtained empirically for all the faulty and

healthy cases to derive a threshold for the fault hypothesis. The ECDF was determined

from the peak magnitude of the lower sideband. This magnitude was normalized by the

fundamental peak value before computing the ECDF for both the healthy as well as the

faulty case. It can be concluded that with a threshold value of 2.282, there is less than 3%

of missed detections without any false alarms. With a stricter threshold, there will be an

escalation of false alarms with lower missed detections.
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Figure 4.12: Stator current spectrum for healthy motor with no load, and 0.13% slip
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Figure 4.13: Stator current spectrum for faulty motor with no load, and 0.13% slip
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Figure 4.14: Stator current spectrum for healthy motor with 1.9% load and 0.2% slip
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Figure 4.15: Stator current spectrum for faulty motor with 1.9% load and 0.2% slip
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Figure 4.16: Stator current spectrum for healthy motor with 13.5% load and 0.46% slip
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Figure 4.17: Stator current spectrum for faulty motor with 13.5% load and 0.46% slip
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Figure 4.18: Stator current spectrum for healthy motor with 33% load and 1% slip
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Figure 4.19: Stator current spectrum for faulty motor with 33% load and 1% slip
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Figure 4.20: Stator current spectrum for healthy motor with 50% load and 1.4% slip
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Figure 4.21: Stator current spectrum for faulty motor with 50% load and 1.4% slip
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Figure 4.22: ECDF plot for mixed eccentricity faults

4.7 Results and Discussion for BRB Fault

The fault components on the stator current spectrum produced by BRB and BER are

similar. Single broken bar is considered as a weak fault. In this thesis, the emphasis

is laid on detection of partial broken bar fault condition under low load. In this case,

the fault components are of very low magnitude and are very close to the fundamental.

Hence, the signal needs to be conditioned prior to the estimation of its spectrum. As

already discussed, a healthy rotor was damaged at three levels for the experiments of BRB.

Different degrees of fault helps in testing the algorithms for detection of weaker faults as

well as quantification of the fault. The motor was run with different supply frequencies and

under various loading conditions. Fig. 4.23 to Fig. 4.26 shows the spectrum of the stator

current with the supply frequency of 50 Hz. The figures are classified as (a) Healthy, (b)

Partial BRB, (c) Half BRB and (d) Full BRB. It is observed the fault specific frequency

component are feebly visible for the no-load condition. Although, multiple minute peaks

are observed for the Partial BRB. In case of Full BRB, a significantly large, high order
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component was visible. As the loading is increased in Fig. 4.24, the fault components

starts appearing around the fundamental with different values of k as in (1.1). As the

load is increased to 24% multiple components of BRB starts appearing for the Full BRB

case. For the Partial and Half BRB cases, the components have a lower magnitude than

the Full BRB case. However, on increasing the load any further, the fault component

magnitude for Half and Partial BRB becomes more conspicuous than the Full BRB. For

experiments with the 50 Hz supply frequency, it is observed that the magnitude of the fault

component does not present a clear trend with the level of fault present. It is also observed,

that, with increased loading, the low-order frequency components have significantly higher

magnitude than the low-ordered components. For some cases, the Healthy motor gave rise

to frequency components around the fundamental, but these components don’t conform to

BRB components. One such situation arose in the Partial BRB case as in Fig. 4.26(b).

These components may be due to the VFD drive or due to the presence of low-frequency load

torque oscillations. The distribution of the sideband band peaks around the fundamental

was determined using ECDF. For this purpose, the magnitude of the sideband peaks were

normalized by the fundamental peak value. ECDF curves for BRB reveals certain conditions

that are highly dependant on the chosen threshold as illustrated in Table 4.2. Depending

upon the application, a value of the threshold can be selected. This table was derived from

the curve as shown in Fig. 4.27. A zoomed version of Fig. 4.27 is provided in Fig. 4.28 to

illustrate the evaluation of the thresholds for specific missed detection and false alarms.

Fig. 4.29 to Fig. 4.31 shows the stator current spectrum for the motor supplied from a

40 Hz supply with various loads. From these figures, a trend is observed for the magnitude of

the fault component for different levels of the fault. The magnitude of the fault component

increases with increasing level of fault for different loads.

The Most comprehensive trend for the magnitude of the fault component was observed

for the motor running with 30 Hz in Fig. 4.32 to Fig. 4.34. In this case, a clear scenario

is presented. The magnitude of the fault component increases with increased level of fault

for different loads.
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Figure 4.23: Stator current spectrum of motor for different levels of fault (supply frequency of 50Hz,
with no load and 0.13% slip)
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Figure 4.24: Stator current spectrum of motor for different levels of fault (supply frequency of 50Hz,
with 4.5% load and 0.26% slip)
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Figure 4.25: Stator current spectrum of motor for different levels of fault (supply frequency of 50Hz,
with 24% load and 0.67% slip)
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Figure 4.26: Stator current spectrum of motor for different levels of fault (supply frequency of 50Hz,
with 30% load and 0.8% slip)
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Figure 4.27: ECDF plot for BRB faults
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Figure 4.28: ECDF plot for BRB faults by zooming into Fig. 4.27

Table 4.2: Statistics for BRB fault

Threshold Value Missed Detection False Alarm

0.015 7.42% 39.47%
0.021 10.99% 36.84%
0.030 15.38% 21.05%
0.039 19.51% 2.63%
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Figure 4.29: Stator current spectrum of motor for different levels of fault (supply frequency of 40Hz, with no load, and 0.083% slip)
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Figure 4.30: Stator current spectrum of motor for different levels of fault (supply frequency of 40Hz, with 3.7% load, and 0.25% slip)
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Figure 4.31: Stator current spectrum of motor for different levels of fault (supply frequency of 40Hz, with 25% load, and 1.08% slip)
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Figure 4.32: Stator current spectrum of motor for different levels of fault (supply frequency of 30Hz, with no load, and 0.083% slip)
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Figure 4.33: Stator current spectrum of motor for different levels of fault (supply frequency of 30Hz, with 6% load, and 0.5% slip)
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Figure 4.34: Stator current spectrum of motor for different levels of fault (supply frequency of 30Hz, with 28% load, and 2.1% slip)
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4.8 Summary

4.8 Summary

This chapter presented the fault detection scheme that can be implemented on an embedded

platform. Fault conditions like BRB and Eccentricity were studied in this chapter. The mo-

tor was eccentric inherently. Further investigation with proper experimental arrangements

is required to quantify between weak and severe eccentricity faults. Detection of partially

and completely damaged bars was accomplished with in low-loading conditions.

Fault detection was performed by spectral analysis of conditioned stator current. The

proposed fault detector can detect Partial BRB fault with the motor running with 0.2%

slip and 1.9% load. Using EKF-based signal conditioner has led to the detection under such

conditions. Further improvement can be envisioned for detection under no-load conditions

by using zooming techniques. The system uses the mixed eccentricity fault component for

estimation of slip. The system is adaptive to changes in supply frequency and loads for

a particular frame of data but is unsuitable for the detection of faults in transient and

non-stationary conditions. Empirical CDF was adopted to determine a threshold required

for assessment of faults with different levels of missed detection and false alarms. A thresh-

old can fixed for a healthy motor with ECDF so that any fault-specific peak beyond this

threshold can envisage the presence of a fault in the incipient stage. Detection of closely

spaced sinusoids under low sampling rate makes this method a powerful tool for detection

of eccentricity and BRB under severe physical conditions.
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C H A P T E R 5

Embedded System Development

for Online Fault Diagnosis

This research was carried out with the goal of developing a hardware platform for imple-

mentation of an SCIM fault detector and it’s testing through an RT fault simulator. For

this purpose, a unified hardware platform is developed. The developed system is capable

of acquiring analog input signals and process it as required. In case of the fault simulator,

the input signal can be the three phase supply voltages and the load signal, whereas for the

fault detector, it can be the stator current from an actual motor or signals generated by

the simulator. In this chapter, a brief description of the hardware and software platform is

followed by the online implementation schema for the fault detector. Discussions about the

implementation of the fault simulator were provided in Chapter 3. The spectral estimator

developed in Chapter 2 can be represented in the form of matrix multiplication. This form

is utilized for smooth and efficient implementation of the spectral estimator. A brief de-

scription of the implementation of the proposed spectral estimator is also presented. This

chapter also discusses the evolution of the fault detector from it’s primitive phase to the

current state.

5.1 The Embedded Platform

DOS based RT kernel popularly known as SIMULINK Real Time (SLRT) Target (formerly

known as xPC target) developed by Mathworks is used for the online implementation. The

RT kernel along with an x86-based computer system provides an environment for emulation
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of the complex fault detection codes. SLRT is a Host-Target based system, where the codes

are initially formulated in the host computer using SIMULINK and MATLAB. Once the

codes are compiled, an executable file is generated. This file is transferred to the target

computer for RT execution. A diagram to illustrate the functional flow for creating the

executable is shown in Fig. 5.1. The host-target interface is established through Ethernet.

A solid state hard disk is used on the target machine for logging of data, which can be

accessed from the host computer. The target computer can also run in standalone mode

with no intervention from the host computer. Initially in the host computer, a SIMULINK

model is created for the required application with all the system and IO requirements. A

photograph of the developed system is shown in Fig. 5.2. The main technical specification

of the developed system is given in Table 5.1.

Matlab / Simulink  Model
Compile with required

configuration for
SLRT

autoexec.bat ,
xpcboot.com  and

application.rtb

DOS boot of
Target

autoexec.bat
executed

xpcboot.com
executed

SLRT  kernel and
application.rtb

Ethernet

TARGET

HOST

Figure 5.1: Flow diagram illustrating the steps required for execution of a simulink model in RT
environment of xPC kernel

Main Board

Monitor

PCI Card

Figure 5.2: Photograph of the developed system
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5.2 Implementation of the Proposed Spectral Estimator

Table 5.1: Technical specification of the target hardware

Sl. No. Subsystem Description

1 Main Board Asus(Z87)
2 PCI slots 3xPCI,2xPCIe(x16)
3 Ethernet ports 1xGigabit LAN Controller
4 USB ports 6 x USB 3.0/2.0
5 Processor Intel Core i7
6 Speed 3.4 GHz
7 RAM 8GB DDR3 (1600 MHz)
8 Hard Disk 120 GB Solid State
9 BIOS UEFI AMI BIOS
10 ROM 64 Mb Flash
11 Media HDMI
12 IO Interface NI PCI 6024E
13 Analog input 16 SE, 8 DE
14 Sampling freq. 200KHz (max)
15 Resolution 12 bit
16 Analog output 2 Channels

1

5.2 Implementation of the Proposed Spectral Estimator

Chapter 2 focussed on deriving the magnitude of a single frequency in the spectrum using the

proposed spectral estimator. It was found, that the spectral estimator can be formulated

in a simple vector-matrix format for easy implementation. This formulation is suitable

for finding the spectral magnitudes in a single specific band or in multiple bands. The

formulation involves a matrix multiplication followed by extraction of diagonal elements as

given below

ĥ = diag
(
WHR̂xW

)
(5.1)

where, W ∈ [w(ωl) : ωsteps : w(ωu)] is known as the search manifold matrix. The nor-

malized frequency band where the search is made is represented by [ωl, ωu]. w(ωi) =[
1 ejωi · · · ejωi(L−1)

]H
, and L is the size of the autocorrelation matrix R̂x given by

(2.12). Now the diagonal elements of the matrix (WHR̂xW), when extracted contains the

spectral peaks in the region where the search is made. Fig. 5.3 shows the contour map

of the matrix and Fig. 2.4 showed the diagonal elements of this matrix representing the

spectral peaks of the given signal.
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Figure 5.3: Contour map of matrix the WHR̂xW

5.2.1 Mathematical Insight into the Implementation Procedure

The spectral peaks of (5.1) can be decomposed by using (2.12) into

ĥ =
1

L
diag

{
(XβW)H (XβW)

}
(5.2)

Taking into consideration a single element of the product of (5.2) and evaluating (XβW)

gives

XβW =

⎡
⎢⎢⎢⎢⎢⎣

L−1∑
i=0

x(i)e−jωl·i · · ·
L−1∑
i=0

x(i)e−jωu·i

...
. . .

...
L−1∑
i=0

x(i+ L− 1)e−jωl·i · · ·
L−1∑
i=0

x(i+ L− 1)e−jωu·i

⎤
⎥⎥⎥⎥⎥⎦ (5.3)

Now, with the assumption that

Xp(ωq) =
L−1∑
v=0

x(v + p)e−jωq ·v (5.4)

And using (5.4) in (5.3) gives

XβW =

⎡
⎢⎣

X0(ωl) · · · X0(ωu)
...

. . .
...

XL−1(ωl) · · · XL−1(ωu)

⎤
⎥⎦ (5.5)
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5.3 Modification of the Spectral Estimator for Multiple Search Bands

Putting the value of (5.5) in (5.2), we get

ĥ =
1

L

[
L−1∑
i=0

|Xi(ωl)|2 · · ·
L−1∑
i=0

|Xi(ωu)|2
]T

(5.6)

Further simplification is achieved by taking the square of the absolute value on both

sides in (5.4) and putting this value in (5.6), resulting in

ĥ =
1

L

[
L−1∑
i=0

∣∣∣∣L−1∑
v=0

x(v + i)e−jωl·v
∣∣∣∣
2

· · ·
L−1∑
i=0

∣∣∣∣L−1∑
v=0

x(v + i)e−jωu·v
∣∣∣∣
2
]

(5.7)

Magnitude of a particular sinusoidal component at ωk is given by

ĥ(ωk) =
1

L

L−1∑
i=0

∣∣∣∣∣
L−1∑
v=0

x(v + i)e−jωk·v
∣∣∣∣∣
2

(5.8)

This component is similar to the relation obtained in (2.21). A block diagram to il-

lustrate the implementation of the spectral estimator is shown in Fig. 5.4. The spectral

estimator is crucial for the detecting multiple faults and slip related frequency components.

For developing a complete system, the spectral estimator needs to be efficient and accu-

rate. It can be made efficient by searching in specific pre-defined bands instead of the full

band. These frequency bands are fixed from the slip and fundamental frequency informa-

tion. Modification of the spectral estimator to evaluate the spectral magnitude in multiple

bands is given below:

5.3 Modification of the Spectral Estimator for Multiple Search

Bands

For detecting multiple faults, the major modifications are associated with the spectral

estimator. As is evident from Table 1.1, different faults in induction motor occupy different

bands on the stator current spectrum. It is possible to evaluate the peak and their magnitude

in the concerned band of interest instead of searching the whole band. This amounts

to performing the spectral estimation in small multiple bands. It is considered that the

frequency components of interest lie sporadically over the entire space defined by ω. In this

situation, it is not viable to search in the full frequency space. Let’s assume that there are

k Central Frequencies (CFs) and are known apriori given by [ω1, ω2, ..., ωk]. These CFs can

be obtained from Table 1.1. Search bands are constructed around these CFs. A spectral

search band corresponding to the ith CF is characterized by its lower ωl
i and upper ωu

i

band limit. Multiple search manifold matrix is constructed with the bands thus formed. A

particular step size is also selected as per the resolution requirement. The search manifold
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Input Signal

Auto Correlation Matrix (Rx)

Multiply
(W'RxW)

Conjugate
Transpose

Extract Diagonal

Spectrum

Create Data Matrix (XB)

Frequency Search Space

Manifold Matrix (W)

W'Rx

W

W

Figure 5.4: Block diagram of the spectral estimator for fault detection

matrix for the overall search space is given by

W =
[
Ω1 Ω2 · · · Ωk

]
(5.9)

where Ωi represents the search manifold matrix for ith CF and is given by

Ωi =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

ejω
l
i ej(ω

l
i+Δωi) · · · ejω

u
i

...
...

...
...

ejω
l
i(L−1) ej(ω

l
i+Δωi)(L−1) · · · ejω

u
i (L−1)

⎤
⎥⎥⎥⎥⎦ (5.10)

Δωi represents the steps in which ωl
i is increased to ωu

i . The value of Δωi is constant for a

particular CF but may vary for different CFs.

5.4 Implementation of the Online Fault Detector

Online implementation of the fault detector was carried out using different methodologies.

A brief overview of the various methods is provided in Fig. 5.6. The SIMULINK model is

developed in accordance with the system described in Fig. 4.1 for detection of faults. A

detailed diagram to illustrate the full working of the implemented system can be seen in
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Fig. 5.5
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Figure 5.5: Fault detection scheme

It consists of two phase. The first stage is used for initialization and the second for

execution. In the first phase, various physical motor parameters and information about

different variables are defined. Dynamic memory allocation problems are avoided by fixing

the dimension of vectors and matrices that are to be used in the execution phase. This

part of the code is run in the non-RT environment, and the variables defined here are

constant throughout the code. These constants can be classified into different groups like

the parameters required for fundamental frequency estimation, slip estimation, spectral

estimation, sampling rates, execution time-steps, etc. The second part is used for estimating

the amplitude of the fault specific frequency components that are to be detected. For this

purpose, the stator current signal is acquired with the analog input card of NI PCI 6024E.

This data is then fed to different subsystems for estimation of the slip, and the fundamental

frequency. The block for estimating the fundamental frequency is also used for input signal

conditioning. The time of execution and the data acquisition sample time is same till this

point, and the execution is performed in RT. After this point, buffers are used for storing

a frame of data, and these frames are transferred to the spectral estimator block which

executes with a slower execution time.

The design of the existing SCIM fault detection system has evolved in the duration of

this research. In this thesis, two of the most significant developments are discussed before

presenting the final version. A separate section is dedicated to the discussion about the

major steps that are involved in the development of the system for detection of multiple

faults efficiently. A brief description of each method is provided below:
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Figure 5.6: Classification and evolution of different implementation strategies for both the spectral
estimators

5.4.1 Single Fixed Frequency Band for Detection of Single Fault

In this case, the spectral estimator estimates the magnitude of the frequency components

in a fixed band. This band is fixed in the initialization stage and so is the manifold matrix

W. A search is made after spectral estimation to find the peak in the fixed band for a fault

component. The search space is also non-adaptive in nature and is fixed. This method is

suitable for detection of a single fault in case of motors where the supply frequency is fixed,

and the variation of the load is also small. The maximum allowed size of the model for SLRT

is limited to 4MB for standalone applications. As a result, this implementation scheme is

not suitable, as large matrices are created during the initialization stage. This particular

method though easy to implement but requires the vital parameters like the search space

to be prefixed.

5.4.2 Single Fixed Frequency Band for Detection of Multiple Faults

In this case also, the frequency band for the spectral estimator is fixed. As the method is

suited for multiple fault detection, therefore, the spectral estimation is performed over a

large band of frequency. This band is fixed in the initialization stage. The only change is

in the search space. The search space is made adaptive to changes in fundamental supply

frequency and slip. Mean values of this slip and fundamental frequency are used to fix the

search band for a particular frame of conditioned stator current. Meanwhile, the spectral

estimation of the stator current is accomplished over the full band, and fault component

peaks are searched in the distinct search bands. This method is suitable for detection of

multiple faults simultaneously under variable loading and change in fundamental supply

frequency. This method requires large memory space for storing the W matrix and hence

is not suitable for the standalone application.
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5.4.3 Multiple Adaptive Frequency Bands for Detection of Multiple Faults

In this case, the spectral estimation is accomplished over multiple frequency bands. These

frequency bands are characterized by their central frequency and bandwidth. The central

frequencies are fixed from various literature surveys as given in Table 1.1. The bandwidth

is set during the initialization phase, whereas the central frequencies are adaptive to the

changes in rotor speed and supply frequency. The number of CFs and the bandwidth is

fixed at the initialization stage. As a result, dynamic memory allocation problems are

circumvented. The content of each of the bands are dynamic and are assigned during

the runtime. With this implementation, the time required for the spectral estimation is

reduced drastically, although the contents of W needs to be assigned for every step unlike

the methods discussed above. This design is suited for detection of multiple faults very

efficiently. The memory required for this method is reduced as W is small. As a result,

standalone application is also suitable with this design.

5.4.3.1 Implementation of ’Multiple Adaptive Frequency Band’ fault detection

Schema

Online implementation scheme for detection of multiple faults was implemented on a hard-

ware platform for online execution as described at the beginning of the chapter. The

architecture of the fault detection system comprises two execution subsystems. The first

subsystem is executed on the host computer and is executed in non-real-time, while, the

second subsystem is used for execution of the fault diagnostic algorithm in a real-time frame

processing based environment, where the data is acquired at a much faster rate than the

execution rate. This is accomplished by using ’Function call generator’ sub-block which

process an array of buffered data at the specified execution rate. No data is missed, as the

overall system works with single sampling rate. The first subsystem is used for initialization

of various model parameters like the data acquisition sample time, execution time-step, and

necessary motor parameters like pole-pairs, no. of bars, rated voltage, rated current and

rated speed, etc. It is in this part that the number of faults to be detected, the total num-

ber of bands to be searched, and the width of each band are defined. The frequency search

space thus created is dimensionally fixed and, as a result, doesn’t require dynamic memory

allocation. The workflow of the second subsystem can be enumerated in the following steps.

i. The stator current is acquired with the predefined sampling rate of 200 Samples/sec.

ii. The acquired data is sent to the next block for supply frequency estimation and signal

conditioning using EKF.

iii. A block estimates the slip according to (4.17).

iv. A buffer is used for storing the acquired samples. The fundamental frequency is com-

puted with the acquisition rate. As a result, the stator current, slip, and fundamental
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frequency are stored in a buffer, and this frames of data are transferred to the next

section, where the processing of these data takes place.

v. For a particular set of stator current, the mean values of fundamental frequency, and

the slip are taken for creation of the search space required for spectral estimation.

vi. Autocorrelation matrix is then created from the stator current data.

vii. Multiple search bands are created from fundamental frequency and slip for different

faults.

viii. Spectral estimation is performed on the conditioned stator current over the con-

structed frequency search space for all the faults.

ix. Peaks in the spectrum are detected. Magnitude of the normalized peaks are de-

termined and are sent to a decision block. The decision block compares the peak

amplitudes with a predefined thresholds for establishing the presence of fault and can

also assess of fault severity depending on the amplitude.

The SIMULINK implementation of the ’Multiple Adaptive Frequency Band’ fault de-

tection system is shown in Fig. 5.7. A screenshot from the fault detection system console

running the SIMULINK model in RT with SLRT is shown in Fig. 5.8. Technical specifica-

tion of the fault detection algorithm is provided in Table 5.2.
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Figure 5.7: Implementation of the fault detector in SIMULINK for SLRT

5.5 Summary

This chapter presents the schemes that were utilized for the online and RT implementation of

the fault detection system. SLRT based hardware platform was developed for this purpose.

80



5.5 Summary

Figure 5.8: Screen shot of the fault detector console

Table 5.2: Technical specification of the Fault Detection Algorithm

Sl. No. Subsystem Description

1 Sampling rate 200 samples/s
2 No. of samples acquired 4000
3 Data acquisition time 20s
4 Processing time/frame 20s
5 No. of faults to be identified 2

6
No. of frequency bands ob-
served

3

7
Additional estimated quanti-
ties

Slip, fundamental frequency, peak
amplitude

The schematic diagram about the implementation of the spectral estimator is also presented.

It is also discussed, how the spectral estimator is modified for estimation of multiple spectral

bands. This has led to faster execution with the minimal use of memory.
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C H A P T E R 6

Conclusion and Future Directions

6.1 Summary of the Studies

This thesis presents the methods and technologies required for an online condition monitor-

ing of induction motors. A special application of this scheme can be the railway locomotive

engine.

Induction motors’ wide utilization in various industries has led to wide-scale research

to detect faults to avoid unscheduled termination of productivity. Through this research,

an unsupervised condition monitoring system for early detection of incipient faults in in-

duction motors is developed. The faults under consideration were confined to the rotor

faults like BRB, BER, and eccentricity. The method of fault detection is based on spectral

analysis of the stator current. The spectral estimation is performed by an elegant Rayleigh

quotient-based method. This method is having lower computational complexity than the

popular method of MUSIC and can also estimate the amplitude of constituent sinusoids

with high accuracy. This information is vital for quantifying the degree of fault present.

The Probability of resolution was used to determine statistically the resolution variation

with different values of autocorrelation matrix size, sampling frequency, and SNR level. The

resolution capacity is found to be lower than the Fourier resolution limit of (Fs/L). Error

in the estimation of the frequency was found and compared to MUSIC and DFT. It was

found that the proposed method has higher accuracy than DFT and is at par to that of

MUSIC.

For testing the fault diagnosis system, an RT SCIM fault simulator is also developed.

Analysis of the fault simulator was carried out with the proposed spectral estimator. The

spectral signatures of the fault simulator were in agreement with the available literature
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and replicates the actual lab setup, with the difference in magnitudes due to the difference

in their sizes. The motor parameters used for the simulation is from the motor that is

available in the literature. Validation of the simulator is envisaged for the experimental

motor, which requires experiments for the parameter estimation of the motor.

The basis of the fault detection is the spectral estimation of the conditioned stator

current. An EKF-based signal pre-conditioning unit is used in conjunction with the spec-

tral estimator to detect sinusoids that are close to the fundamental and have negligible

magnitude compared to the fundamental. It was found that the component of the mixed

eccentricity was present inherently in all the motors. Although, the magnitude of this

component varies drastically in the presence of eccentricity fault. It was found, that the

magnitude decreased with increased loading of the motor. Rotational speed is estimated

from the slip obtained from this mixed eccentricity component. The slip along with the

value of the fundamental frequency is used for creating multiple search bands for detecting

multiple faults. Most of research concerned with detecting BRB faults are confined to the

detection of multiple bar failures. In this thesis, a single bar with various levels of damage

were tested. The spectral estimator was found to be reliable in quantifying the degree of

damage. The normalized peak magnitude of sideband frequency components w.r.t the fun-

damental is considered as the discriminating feature for fault detection and quantification.

The distribution of the normalized magnitude is determined using ECDF. In case of BRB,

the distribution of healthy and faulty cases overlap with each other. As a result, there is a

chance of false and missed detection in case of weak faults running under low loads. The

thresholds are selected, considering both the missed detection and false alarm rates. With

increased loading and degree of the fault, the normalized magnitude can clearly distinguish

between a healthy and faulty motor. In case of the eccentricity fault, distribution of the

healthy and faulty cases do not overlap. As a result, the probability of missed detection

is negligible, with very low false alarm. An embedded hardware platform is developed for

online fault diagnosis and RT fault simulation. The fault detection algorithm evolved from

the primitive form to its current form in the due course of this research. Presently, the fault

detector uses ’Multiple Adaptive Frequency Band’ for detection of multiple faults. This

method is fast and takes minimal space in terms of memory.

The novel and original methods developed in the present study will find useful appli-

cations not only in areas in fault detection but also other areas of science and engineering

in the near future. For example, the Rayleigh quotient-based spectral estimator can be

modified to be used in the direction of arrival applications with the added advantage of

exact peak magnitude which is not available in subspace-based methods.

6.2 Contribution of the Thesis

The contribution of the thesis can be enumerated as:

84



6.3 Future Scope

i. A high-resolution spectral estimation technique based on Rayleigh quotient is pro-

posed for semi RT and frame processing based implementation with computational

complexity lower than the conventional method of MUSIC. This spectral estimator

is capable of estimating the accurate amplitude of sinusoids, and it doesn’t require

additional information about input signal parameters like the number of sinusoids.

The practical limit of resolution with different parameters for the spectral estima-

tor is evaluated by the probability of resolution. Relative errors were statistically

determined and compared with DFT and MUSIC.

ii. A system is developed for fault detection. This system consists of proposed spectral

estimator, a fundamental frequency tracker, a signal conditioner, and a speed estima-

tor. Use of EKF-based signal conditioner has improved the detectability of BRB fault

components. This method is also suitable for online implementation as it is adaptive

to changes in speed and supply frequency. The amplitude of fault specific compo-

nents is shown to be dependent on the degree of the fault. Empirical Cumulative

Distribution Function (ECDF) was utilized to find the threshold for the two faults for

particular missed detection and false alarm rate.

iii. An RT SCIM simulator for simulation of BRB, BER and different type of eccentricity

faults has been developed.

iv. An experimental test setup comprising of a 22KW SCIM with minimal to the over-

loading arrangement has been designed for emulation of different faults. BRB has been

tested for different levels of damage to a single rotor. Additionally, an RT hardware

platform for RT fault simulation and online fault detection has been designed.

6.3 Future Scope

The investigation carried out in the present work leaves enough scope for extension of the

approaches presented in this thesis. The future lines of investigation related to the thesis

are listed below:

i. The spectral estimator can be improved for better resolution and accuracy with sparse

techniques. Improvement of the present form is possible using zooming.

ii. The fault simulator can be made more precise with the inclusion of effects like skewing

of rotor bars and slotting.

iii. Currently, the fault detector needs 20 seconds of statistically stationary data at 200

samples/s. The algorithm needs to be improved with a lower acquisition time.

iv. For the online system, concurrent and multicore implementation with SLRT can be

utilized for faster execution
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v. The present study on eccentricity fault was based on the inherent eccentricity observed

in one of the motors. In future, test-setups can be designed for systematic emulation

of eccentricity and bearing related faults.

vi. With the current state of the fault detection scheme, further improvements can be

envisaged with portable solutions with ARM, FPGA, and DSP-based boards.
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[36] M. Blödt, J. Regnier, and J. Faucher, “Distinguishing Load Torque Oscillations and Eccentricity Faults
in Induction Motors Using Stator Current Wigner Distributions,” IEEE Trans. Ind. Appl., vol. 45,
no. 6, pp. 1991–2000, 2009.

[37] S. Nandi, S. Ahmed, and H. A. Toliyat, “Detection of Rotor Slot and other Eccentricity Related Har-
monics in a Three Phase Induction Motor with Different Rotor Cages,” IEEE Trans. Energy Convers.,
vol. 16, no. 3, pp. 253–260, 2001.

[38] Z. Ye, B. Wu, and A. Sadeghian, “Current Signature Analysis of Induction Motor Mechanical Faults
by Wavelet Packet Decomposition,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1217–1228, 2003.

[39] M. Riera-Guasp, M. Pineda-Sanchez, J. Perez-Cruz, R. Puche-Panadero, J. Roger-Folch, and J. A.
Antonino-Daviu, “Diagnosis of Induction Motor Faults via Gabor Analysis of the Current in Transient
Regime,” IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1583–1596, 2012.

[40] Z. Liu, X. Yin, Z. Zhang, D. Chen, and W. Chen, “Online Rotor Mixed Fault Diagnosis Way Based on
Spectrum Analysis of Instantaneous Power in Squirrel Cage Induction Motors,” IEEE Trans. Energy
Convers., vol. 19, no. 3, pp. 485–490, 2004.

[41] J. Faiz and M. Ojaghi, “Instantaneous-Power Harmonics as Indexes for Mixed Eccentricity Fault in
Mains-Fed and Open/Closed-Loop Drive-Connected Squirrel-Cage Induction Motors,” IEEE Trans.
Ind. Electron., vol. 56, no. 11, pp. 4718–4726, 2009.

[42] M. Drif and A. J. M. Cardoso, “Airgap-Eccentricity Fault Diagnosis , in Three-Phase Induction Motors
, by the Complex Apparent Power Signature Analysis,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp.
1404–1410, 2008.

[43] A. M. Knight and S. P. Bertani, “Mechanical Fault Detection in a Medium-Sized Induction Motor
Using Stator Current Monitoring,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 753–760, 2005.

[44] S. Nandi, T. C. Ilamparithi, S. B. Lee, and D. Hyun, “Detection of Eccentricity Faults in Induction
Machines Based on Nameplate Parameters,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1673–1683,
2011.

[45] D. Hyun, J. Hong, S. B. Lee, K. Kim, E. J. Wiedenbrug, M. Teska, and S. Nandi, “Automated Mon-
itoring of Airgap Eccentricity for Inverter-Fed Induction Motors Under Standstill Conditions,” IEEE
Trans. Ind. Appl., vol. 47, no. 3, pp. 1257–1266, 2011.

[46] I. P. Georgakopoulos, E. D. Mitronikas, and A. N. Safacas, “Detection of Induction Motor Faults in
Inverter Drives Using Inverter Input Current Analysis,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp.
4365–4373, 2011.

[47] V. N. Ghate and S. V. Dudul, “Cascade Neural-Network-Based Fault Classifier for Three-Phase Induc-
tion Motor,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1555–1563, May 2011.

[48] M. Seera, C. P. Lim, D. Ishak, and H. Singh, “Fault Detection and Diagnosis of Induction Motors Using
Motor Current Signature Analysis and a Hybrid FMM CART Model,” IEEE Trans. Neural Networks
Learn. Syst., vol. 23, no. 1, pp. 97–108, 2012.

[49] S. Choi, B. Akin, M. M. Rahimian, and H. A. Toliyat, “Implementation of a Fault-Diagnosis Algorithm
for Induction Machines Based on Advanced,” IEEE Transaction on Industrial electronics., vol. 58, no. 3,
pp. 937–948, 2011.

[50] C. Concari, G. Franceschini, and C. Tassoni, “Toward Practical Quantification of Induction Drive Mixed
Eccentricity,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1232–1239, 2011.

[51] A. Ceban, R. Pusca, and R. Romary, “Study of Rotor Faults in Induction Motors Using External
Magnetic Field Analysis,” IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2082–2093,
May 2012.

[52] R. N. Andriamalala, H. Razik, L. Baghli, and F.-m. Sargos, “Eccentricity Fault Diagnosis of a Dual-
Stator Winding Induction Machine Drive Considering the Slotting Effects,” IEEE Trans. Ind. Electron.,
vol. 55, no. 12, pp. 4238–4251, 2008.

[53] J. Faiz, B. M. Ebrahimi, B. Akin, and H. A. Toliyat, “Finite-Element Transient Analysis of Induction
Motors Under Mixed Eccentricity Fault,” IEEE Trans. Magn., vol. 44, no. 1, pp. 66–74, 2008.

89



[54] ——, “Motors using Finite Element Method,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1764–1767, 2009.

[55] J. Faiz and M. Ojaghi, “Stator Inductance Fluctuation of Induction Motor as an Eccentricity Fault
Index,” IEEE Transactions on Magnetics, vol. 47, no. 6, pp. 1775–1785, Jun. 2011.

[56] D. G. Dorrell, “Sources and Characteristics of Unbalanced Magnetic Pull in Three-Phase Cage Induction
Motors With Axial-Varying Rotor Eccentricity,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 12–24, 2011.

[57] D.-J. Kim, H.-J. Kim, J.-P. Hong, and C.-J. Park, “Estimation of Acoustic Noise and Vibration in an
Induction Machine Considering Rotor Eccentricity,” IEEE Trans. Magn., vol. 50, no. 2, pp. 857–860,
Feb. 2014.

[58] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Investigation of Vibration Signatures for Multiple
Fault Diagnosis in Variable Frequency Drives Using Complex Wavelets,” IEEE Trans. Power Electron.,
vol. 29, no. 2, pp. 936–945, Feb. 2014.

[59] V. Climente-Alarcon, J. Antonino-Daviu, F. Vedreno-Santos, and R. Puche-Panadero, “Vibration tran-
sient detection of broken rotor bars by psh sidebands,” Industry Applications, IEEE Transactions on,
vol. 49, no. 6, pp. 2576–2582, Nov 2013.

[60] Y. Gritli, A. Di Tommaso, F. Filippetti, R. Miceli, C. Rossi, and A. Chatti, “Investigation of motor
current signature and vibration analysis for diagnosing rotor broken bars in double cage induction
motors,” in Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012 Interna-
tional Symposium on. IEEE, 2012, pp. 1360–1365.

[61] S. Chang and R. Yacamini, “Experimental study of the vibrational behaviour of machine stators,” in
Electric Power Applications, IEE Proceedings-, vol. 143, no. 3. IET, 1996, pp. 242–250.

[62] S. Verma, R. Singal, and K. Williams, “Vibration behaviour of stators of electrical machines, part i:
Theoretical study,” Journal of sound and vibration, vol. 115, no. 1, pp. 1–12, 1987.

[63] R. Singal, K. Williams, and S. Verma, “Vibration behaviour of stators of electrical machines, part ii:
experimental study,” Journal of sound and vibration, vol. 115, no. 1, pp. 13–23, 1987.

[64] A. S. Raj and N. Murali, “Early classification of bearing faults using morphological operators and fuzzy
inference,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 2, pp. 567–574, 2013.

[65] V. C. Leite, B. da Silva, J. Guedes, G. F. Cintra Veloso, L. E. Borges da Silva, G. Lambert-Torres,
E. L. Bonaldi, and L. E. de Lacerda de Oliveira, “Detection of localized bearing faults in induction
machines by spectral kurtosis and envelope analysis of stator current,” Industrial Electronics, IEEE
Transactions on, vol. 62, no. 3, pp. 1855–1865, 2015.

[66] M. Nemec, K. Drobnic, D. Nedeljkovic, F. Rastko, V. Ambrozic, R. Fiser, and V. Ambrozic, “Detection
of Broken Bars in Induction Motor through the Analysis of Supply Voltage Modulation,” IEEE Trans.
Ind. Electron., vol. 57, no. 8, pp. 2879–2888, 2010.

[67] S. M. A. Cruz, “An Active Reactive Power Method for the Diagnosis of Rotor Faults in Three-Phase
Induction Motors Operating Under Time-Varying Load Conditions,” IEEE Transactions on Energy
Conversion, vol. 27, no. 1, pp. 71–84, 2012.

[68] X. Ying, “Performance evaluation and thermal fields analysis of induction motor with broken rotor bars
located at different relative positions,” Magnetics, IEEE Transactions on, vol. 46, no. 5, pp. 1243–1250,
2010.

[69] M. J. Picazo-Rodenas, R. Royo, J. A. Antonino-Daviu, and J. Roger-Folch, “Use of Infrared Thermog-
raphy for Computation of Heating Curves and Preliminary Failure Detection in Induction Motors,”
2012 XXth Int. Conf. Electr. Mach., pp. 525–531, Sep. 2012.

[70] L. Li, W. Fu, S. Ho, S. Niu, and Y. Li, “A quantitative comparison study of power-electronic-driven
flux-modulated machines using magnetic field and thermal field co-simulation,” Industrial Electronics,
IEEE Transactions on, vol. 62, no. 10, pp. 6076–6084, 2015.

[71] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Multiple Signature Processing-Based Fault Detection
Schemes for Broken Rotor Bar in Induction Motors,” IEEE Trans. Energy Convers., vol. 20, no. 2,
pp. 336–343, 2005.

90



[72] B. Ayhan, M.-y. Chow, and M.-h. Song, “Multiple Discriminant Analysis and Neural-Network-Based
Monolith and Partition Fault-Detection Schemes for Broken Rotor Bar in Induction Motors,” IEEE
Trans. Ind. Electron., vol. 53, no. 4, pp. 1298–1308, Aug. 2006.

[73] B. Ayhan, H. J. Trussell, M.-y. Chow, and M.-H. Song, “On the Use of a Lower Sampling Rate for
Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods,” IEEE Transaction on
Industrial electronics., vol. 55, no. 3, pp. 1421–1434, 2008.

[74] A. Garcia-perez, R. D. J. Romero-troncoso, E. Cabal-yepez, and R. A. Osornio-rios, “The Application
of High-Resolution Spectral Analysis for Identifying Multiple Combined Faults in Induction Motors,”
IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 2002–2010, May 2011.

[75] M. Khan, T. S. Radwan, and M. A. Rahman, “Real-time implementation of wavelet packet transform-
based diagnosis and protection of three-phase induction motors,” Energy Conversion, IEEE Transac-
tions on, vol. 22, no. 3, pp. 647–655, 2007.

[76] M. Pineda-Sanchez, J. Perez-Cruz, J. Roger-Folch, M. Riera-Guasp, A. Sapena-Bano, and R. Puche-
Panadero, “Diagnosis of induction motor faults using a dsp and advanced demodulation techniques,”
in Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2013 9th IEEE
International Symposium on. IEEE, 2013, pp. 69–76.

[77] A. Ordaz-moreno, R. D. J. Romero-troncoso, J. A. Vite-frias, J. R. Rivera-gillen, and A. Garcia-
perez, “Automatic Online Diagnosis Algorithm for Broken-Bar Detection on Induction Motors Based
on Discrete Wavelet Transform for FPGA Implementation,” IEEE Trans. Ind. Electron., vol. 55, no. 5,
pp. 2193–2202, 2008.

[78] J. Rangel-Magdaleno, R. Romero-Troncoso, R. A. Osornio-Rios, E. Cabal-Yepez, and L. M. Contreras-
Medina, “Novel methodology for online half-broken-bar detection on induction motors,” Instrumenta-
tion and Measurement, IEEE Transactions on, vol. 58, no. 5, pp. 1690–1698, 2009.

[79] R. D. J. Romero-troncoso, R. Saucedo-Gallaga, E. Cabal-Yepez, A. Garcia-Perez, R. A. Osornio-rios,
R. Alvarez-Salas, H. Miranda-Vidales, and N. Huber, “FPGA-Based Online Detection of Multiple
Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference,” IEEE Trans.
Ind. Electron., vol. 58, no. 11, pp. 5263–5270, Nov. 2011.

[80] B. Halder and T. Kailath, “Efficient estimation of closely spaced sinusoidal frequencies using subspace-
based methods,” Signal Processing Letters, IEEE, vol. 4, no. 2, pp. 49–51, 1997.

[81] B. N. Datta, Numerical Llinear Algebra and Applications. Siam, 2010.

[82] M. H. Hayes, Statistical Digital Signal Processing and Modeling. John Wiley & Sons, 2010.

[83] Q. Zhang, “Probability of Resolution of the MUSIC Algorithm,” IEEE Trans. Signal Process., vol. 43,
no. 4, pp. 978–987, Apr. 1995.

[84] A. V. Oppenheim, R. W. Schafer, J. R. Buck et al., Discrete-time Signal Processing. Pearson Prentice
Hall, 2011, vol. 2.

[85] H. A. Toliyat and T. A. Lipo, “Transient Analysis of Cage Induction Machines under Stator, Rotor Bar
and End Ring Faults,” Energy Conversion, IEEE Transactions on, vol. 10, no. 2, pp. 241–247, 1995.

[86] J. Faiz, I. T. Ardekanei, and H. A. Toliyat, “An Evaluation of Inductances of a Squirrel-Cage Induction
Motor Under Mixed Eccentric Conditions,” IEEE Trans. Energy Convers., vol. 18, no. 2, pp. 252–258,
2003.

[87] J. Faiz and M. Ojaghi, “Unified winding function approach for dynamic simulation of different kinds of
eccentricity faults in cage induction machines,” IET Electric Power Applications, vol. 3, no. 5, p. 461,
2009.

[88] J. Faiz and I. Tabatabaei, “Extension of Winding Function Theory for Nonuniform Air Gap in Electric
Machinery,” IEEE Trans. Magn., vol. 38, no. 6, pp. 3654–3657, 2002.

[89] A. Routray, A. K. Pradhan, and K. P. Rao, “A Novel Kalman Filter for Frequency Estimation of
Distorted Signals in Power Systems,” IEEE Trans. Instrum. Meas., vol. 51, no. 3, pp. 469–479, Jun.
2002.

91



[90] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley &
Sons, 2006.

[91] M. S. Zaky, M. M. Khater, S. S. Shokralla, and H. Yasin, “Wide-Speed-Range Estimation With Online
Parameter Identification Schemes of Sensorless Induction Motor Drives,” IEEE Trans. Ind. Electron.,
vol. 56, no. 5, pp. 1699–1707, May 2009.

[92] L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, “Second-Order Sliding-Mode Observer with Online
Parameter Identification for Sensorless Induction Motor Drives,” IEEE Trans. Ind. Informat., vol. 61,
no. 10, pp. 5280–5289, 2014.

[93] O. Keysan and H. B. Ertan, “Real-time Speed and Position Estimation using Rotor Slot harmonics,”
IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 899–908, 2013.

[94] Z. Gao, L. Turner, and R. S. Colby, “Application of Linear-phase Filters in Induction Motor Speed
Detection,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 1314–1321, 2012.

[95] Z. Gao, L. Turner, R. S. Colby, and B. Leprettre, “A Frequency Demodulation Approach to Induction
Motor Speed Detection,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1632–1642, Jul. 2011.

92



List of Publication

1. A. K. Samanta, A. Naha, D. Basu, A. Routray, and A. K. Deb, ”Online Condition Monitoring of Traction
Motor,” Book chapter in Handbook of Research on Emerging Innovations in Rail Transportation Engineering,
IGI Global. (accepted)

2. A. Naha, A. K. Samanta, A. Routray, and A. K. Deb, ”Determining Autocorrelation Matrix Size and Sampling
Frequency for MUSIC Algorithm,” IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1016-1020, Aug. 2015.

3. A. Mukherjee, A. Routray, and A. K. Samanta, ”Method for On-line Detection of Arcing in Low Voltage
Distribution Systems,” IEEE Trans. Power Deliv., vol. PP, no. 99, pp. 11, 2015.

4. A. K. Samanta, A. Naha, A. Routray, and A. K. Deb, ”A Fast and Accurate Spectral Estimator for Online
Detection of Partial Broken Bar in Induction Motors,” IEEE Trans. Ind. Electron. (Under review)

93





Author Biography

Anik Kumar Samanta is M.S. (by research) from Advanced Technology Development Centre, Indian Institute of

Technology, Kharagpur. He completed his B.Tech. degree in Electronics & Communication Engineering from Dr. B.

C. Roy Engg. College, Durgapur. He is also associated with the Center for Railway Research for designing diagnostics

of induction motors for the Indian Railways. His research interests include high-resolution spectral estimation, signal

based fault diagnosis of induction motors, and real-time and embedded signal processing.

95


	Title Page
	Approval Certificate
	Certificate by the Supervisor
	Declaration
	Acknowledgement
	Abstract
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Background
	Broken Rotor Bar and Broken End Ring Faults
	Eccentricity Faults
	Signals and Sensing Techniques for Fault Detection

	Motivation and Objective
	Organization of the Thesis

	Development of the Proposed Spectral Estimator
	The Signal Model
	Discrete Fourier Transform
	Power Spectral Density
	Subspace Based Spectral Estimators
	The proposed Spectral Estimator
	Formation of Autocorrelation Matrix
	Mathematical Derivation

	Evaluation of the Proposed Spectral Estimator with Probability of Resolution
	Dependence on Autocorrelation Matrix Size
	Dependence on Sampling Frequency
	Robustness of the Spectral Estimator

	Evaluation and Comparisons of Frequency Estimation Accuracy
	Estimation of Accurate Amplitude
	Effect of Windowing on the Proposed Spectral Estimator
	Summary

	Development of the Real-time SCIM Fault Simulator
	Modeling Technique
	Implementation of the Real-Time SCIM Simulator
	Validation of the Proposed Fault Simulator
	Summary

	Induction Motor Weak Fault Detection Algorithm
	Signal Conditioning and Fundamental Frequency Estimator
	Estimation of Slip and Speed
	Relative Amplitude Estimation of Fault Frequency Components
	Effect of Windowing on Fault Detection
	The Experimental Setup
	Design of Experiment for Eccentricity
	Design of Experiment for BRB

	Results and Discussion for Eccentricity Fault
	Results and Discussion for BRB Fault
	Summary

	Embedded System Development for Online Fault Diagnosis
	The Embedded Platform
	Implementation of the Proposed Spectral Estimator
	Mathematical Insight into the Implementation Procedure

	Modification of the Spectral Estimator for Multiple Search Bands
	Implementation of the Online Fault Detector
	Single Fixed Frequency Band for Detection of Single Fault
	Single Fixed Frequency Band for Detection of Multiple Faults
	Multiple Adaptive Frequency Bands for Detection of Multiple Faults
	Implementation of 'Multiple Adaptive Frequency Band' fault detection Schema


	Summary

	Conclusion and Future Directions
	Summary of the Studies
	Contribution of the Thesis
	Future Scope

	Bibliography
	References

	List of Publication
	Author Biography

